Publications by authors named "Sandra Gould"

Purpose: To evaluate whether there were differences in acquisition of research grant support between male and female faculty at eight Harvard Medical School-affiliated institutions.

Methods: Data were obtained from the participating institutions on all research grant applications submitted by full-time faculty from 2001 through 2003. Data were analyzed by gender and faculty rank of applicant, source of support (federal or nonfederal), funding outcome, amount of funding requested, and amount of funding awarded.

View Article and Find Full Text PDF

A series of 1,3,4-trisubstituted pyrrolidine CCR5 receptor antagonists containing a variety of fused heterocycles at the 4-position of the piperidine side chain has been discovered, which are orally bioavailable with potent anti-HIV activity.

View Article and Find Full Text PDF

Synthesis of analogs containing more rigid bicyclic piperidine replacements for the 4-benzyloxycarbonyl-(ethyl)amino-piperidine moiety of the CCR5 antagonist structure, 1, is described. Although similar binding affinity to the lead was achieved with some analogs they were overall less potent anti-HIV agents suggesting that other features besides CCR5 binding are required for good anti-viral activity.

View Article and Find Full Text PDF

Cellular proliferation of HIV-1 requires the cooperative assistance of both the CCR5 and CD4 receptors. Our medicinal chemistry efforts in this area have resulted in the identification of N-alkyl piperidine sulfones as CCR5 antagonists. These compounds display potent binding and show antiviral properties in HIV-1 spread cell-based assays.

View Article and Find Full Text PDF

Efforts toward the exploration of the title compounds as CCR5 antagonists are disclosed. The basis for such work stems from the fact that cellular proliferation of HIV-1 requires the cooperative assistance of both CCR5 and CD4 receptors. The synthesis and SAR of pyrrolidineacetic acid derivatives as CCR5 antagonists displaying potent binding and antiviral properties in a HeLa cell-based HIV-1 infectivity assay are discussed.

View Article and Find Full Text PDF

Extensive SAR studies in our benzylpyrazole series of CCR5 antagonists have shown that both lipophilic and hydrophilic substituents on the phenyl of the benzyl group increase antiviral potency. However, improvements in pharmacokinetic profiles were generally only observed with more lipophilic substitutions. 4-Biphenyl (51) performed the best in this regard.

View Article and Find Full Text PDF

Modifications of the alkyl acetic acid portion and the phenyl on pyrrolidine in our lead pyrazole compound 1 afforded the isopropyl compound 9. This compound is a potent CCR5 antagonist showing good in vitro antiviral activity against HIV-1, an excellent selectivity profile, and good oral bioavailability in three animal species. During this investigation, a new method for the preparation of alpha-(pyrrolidin-1-yl)-alpha,alpha-dialkyl acetic acid from a pyrrolidine and alpha-bromo-alpha,alpha-dialkyl acetic acid using silver triflate was discovered.

View Article and Find Full Text PDF

Replacement of the flexible connecting chains between the piperidine moiety and an aromatic group in previous CCR5 antagonists with heterocycles, such as pyrazole and isoxazole, provided potent CCR5 antagonists with excellent anti-HIV-1 activity in vitro. SAR studies revealed optimal placement of an unsubstituted nitrogen atom in the heterocycle to be meta to the bond connected to the 4-position of piperidine. Truncation of a benzyl group to a phenyl group afforded compounds with dramatically improved oral bioavailability, albeit with reduced activity.

View Article and Find Full Text PDF

CXCR6, the receptor for the membrane-anchored chemokine, CXCL16, is expressed on a subset of CCR5-bearing memory T cells, and may play a role in recruiting these cells to sites of inflammation. Here, we set out to determine the effect of T cell activation on CXCR6 expression. Highly purified human peripheral blood T cells were cultured for 7-8 days in presence of IL-2 (400 U/ml) to enhance CXCR6 expression.

View Article and Find Full Text PDF

Extensive screening of compound libraries was undertaken to identify compounds with high affinity for the rat NK(1) receptor based on inhibition of [(125)I]-substance P binding. RP67580, SR140333, NKP-608 and GR205171 were selected as compounds of interest, with cloned rat NK(1) receptor binding K(i) values of 0.15-1.

View Article and Find Full Text PDF

[reaction: see text] A novel approach to alpha,alpha-disubstituted-beta-amino acids (beta(2,2)-amino acids) was employed in the synthesis of a series of 3-(pyrrolidin-1-yl)propionic acids possessing high affinity for the CCR5 receptor and potent anti-HIV activity. The rat pharmacokinetics for these new analogues featured higher bioavailabilities and lower rates of clearance as compared to cyclopentane 1.

View Article and Find Full Text PDF

A new class of 4-(aminoheterocycle)piperidine derived 1,3,4 trisubstituted pyrrolidine CCR5 antagonists is reported. Compound 4a is shown to have good binding affinity (1.8 nM) and antiviral activity in PBMC's (IC(95)=50 nM).

View Article and Find Full Text PDF

The 4-(3-phenylprop-1-yl)piperidine moiety of the 1,3,4-trisubstituted pyrrolidine CCR5 antagonist 1 was modified with electron deficient aromatics as well as replacement of the benzylic methylene with sulfones, gem-difluoromethylenes and alcohols in an effort to balance the antiviral potency with reasonable pharmacokinetics.

View Article and Find Full Text PDF

A series of alpha-(pyrrolidin-1-yl)acetic acids is presented as selective and potent antivirals against HIV. Several of the pyrrolidine zwitterions demonstrated reasonable in vitro properties, enhanced antiviral activities and improved pharmacokinetic profiles over pyrrolidine 1.

View Article and Find Full Text PDF

Incorporation of acidic functional groups into a lead CCR5 antagonist identified from a targeted combinatorial library resulted in compounds with enhanced anti-HIV-1 activity and attenuated L-type calcium channel affinity.

View Article and Find Full Text PDF

A series of CCR5 antagonists containing bicyclic isoxazolidines was generated through a nitrone mediated cycloaddition with olefins bearing the preferred pharmacophores previously described. Potent antagonists (3 and 16) were generated with enhanced affinity for the CCR5 receptor while maintaining antiviral activity against HIV.

View Article and Find Full Text PDF