Publications by authors named "Sandra Gardam"

Members of the tumor necrosis factor receptor (TNFR) superfamily are involved in a number of physiological and pathological responses by activating a wide variety of intracellular signaling pathways. The X-linked ectodermal dysplasia receptor (XEDAR; also known as EDA2R or TNFRSF27) is a member of the TNFR superfamily that is highly expressed in ectodermal derivatives during embryonic development and binds to ectodysplasin-A2 (EDA-A2), a member of the TNF family that is encoded by the anhidrotic ectodermal dysplasia (EDA) gene. Although XEDAR was first described in the year 2000, its function and molecular mechanism of action is still largely unclear.

View Article and Find Full Text PDF

In this study, a critical and novel role for TNF receptor (TNFR) associated factor 2 (TRAF2) is elucidated for peripheral CD8(+) T-cell and NKT-cell homeostasis. Mice deficient in TRAF2 only in their T cells (TRAF2TKO) show ∼40% reduction in effector memory and ∼50% reduction in naïve CD8(+) T-cell subsets. IL-15-dependent populations were reduced further, as TRAF2TKO mice displayed a marked ∼70% reduction in central memory CD8(+) CD44(hi) CD122(+) T cells and ∼80% decrease in NKT cells.

View Article and Find Full Text PDF

It has been more than a decade since it was recognized that the nuclear factor of kappa light polypeptide gene enhancer in B cells (NF-κB) transcription factor family was activated by two distinct pathways: the canonical pathway involving NF-κB1 and the non-canonical pathway involving NF-κB2. During this time a great deal of evidence has been amassed on the ligands and receptors that activate these pathways, the cytoplasmic adapter molecules involved in transducing the signals from receptors to nucleus, and the resulting physiological outcomes within body tissues. In contrast to NF-κB1 signaling, which can be activated by a wide variety of receptors, the NF-κB2 pathway is typically only activated by a subset of receptor and ligand pairs belonging to the tumor necrosis factor (TNF) family.

View Article and Find Full Text PDF

Host survival depends on an effective immune system and pathogen survival on the effectiveness of immune evasion mechanisms. Staphylococcus aureus utilizes a number of molecules to modulate host immunity, including the SSL family of which SSL7 binds IgA and inhibits Fcα receptor I (FcαRI)-mediated function. Other Gram-positive bacterial pathogens produce IgA binding proteins, which, similar to SSL7, also bind the Fc at the CH2/CH3 interface (the junction between constant domains 2 and 3 of the heavy chain).

View Article and Find Full Text PDF

B cells require signals delivered through B-cell activating factor of the TNF family receptor (BAFF-R) and CD40 to survive and produce antibody responses in vivo. In vitro data indicate that these signals are controlled by the homologous RING finger proteins cIAP1 and cIAP2, in collaboration with TRAF2 and TRAF3. There is also mounting evidence that all 4 of these signaling molecules can act as tumor suppressors in human B-lineage malignancies.

View Article and Find Full Text PDF

Introduction: Multiple myeloma (MM) is a neoplasm derived from B lymphocytes and often results in uncontrolled clonal expansion of antibody-secreting cells. While current treatments are able to prolong survival, MM remains incurable. Excessive NF-κB activity in MM contributes to tumor progression and survival.

View Article and Find Full Text PDF

Targeted modification of the mouse genome provides the capability to manipulate complex physiological processes in a precise and controlled manner. Investigation of B-lymphocyte biology has benefited not only from the targeted modification of genes controlling B-cell survival and responsiveness, but also from the manipulation of antigen specificity made possible by targeting endogenous immunoglobulin loci. In this review, we discuss recent results obtained from our laboratory using gene-targeted mouse models to investigate the in vivo regulation of B-cell survival and responsiveness.

View Article and Find Full Text PDF

Transduction of bone marrow stem cells with retroviral expression vectors represents a cheaper and more rapid alternative to conventional transgenesis for studies of in vivo gene function. However, achieving tissue-specific expression of genes inserted into retroviral vectors is notoriously difficult. We have developed a single tri-cistronic retroviral vector (MG(f)I4) that facilitates Cre-dependent, lineage-specific gene expression within hematopoietic cells.

View Article and Find Full Text PDF

The cytokine B cell activation factor of the TNF family (BAFF) is considered to perform a proinflammatory function. This paradigm is particularly true for B cell-dependent immune responses; however the exact role for BAFF in regulating T cell immunity is ill-defined. To directly assess the effect of BAFF upon T cells, we analyzed T cell-dependent immune responses in BAFF-transgenic (Tg) mice.

View Article and Find Full Text PDF

Tumor necrosis factor receptor-associated factors 2 and 3 (TRAF2 and TRAF3) were shown to function in a cooperative and nonredundant manner to suppress nuclear factor-kappaB2 (NF-kappaB2) activation, gene expression, and survival in mature B cells. In the absence of this suppressive activity, B cells developed independently of the obligatory B cell survival factor, BAFF (B cell-activating factor of the tumor necrosis factor family). However, deletion of either TRAF2 or TRAF3 from the T cell lineage did not promote T cell survival, despite causing extensive NF-kappaB2 activation.

View Article and Find Full Text PDF

B cells responding to T-dependent antigen either differentiate rapidly into extrafollicular plasma cells or enter germinal centers and undergo somatic hypermutation and affinity maturation. However, the physiological cues that direct B cell differentiation down one pathway versus the other are unknown. Here we show that the strength of the initial interaction between B cell receptor (BCR) and antigen is a primary determinant of this decision.

View Article and Find Full Text PDF

Tumor necrosis factor (TNF) superfamily receptors typically induce both NF-kappaB and JNK activation by recruiting the TRAF2 signal transduction protein to their cytoplasmic domain. The type 2 TNF receptor (TNFR2), however, is a poor activator of these signaling pathways despite its high TRAF2 binding capability. This apparent paradox is resolved here by the demonstration that TNFR2 carries a novel carboxyl-terminal TRAF2-binding site (T2bs-C) that prevents the delivery of activation signals from its conventional TRAF2-binding site (T2bs-N).

View Article and Find Full Text PDF

The early responses of follicular (Fo) and marginal zone (MZ) B cells to T cell-dependent Ag were compared using anti-hen egg lysozyme (HEL+) B cells capable of class switch recombination and somatic hypermutation (SHM). Purified CD21/(35int)CD23high Fo and CD21/35(high)CD23low MZ splenic B cells from SW(HEL) Ig-transgenic mice were transferred into wild-type recipients and challenged with HEL-sheep RBC. Responding HEL+ B cells from both populations switched efficiently to IgG1, generated syndecan-1+ Ab-secreting cells, and exhibited equivalent rates of proliferation.

View Article and Find Full Text PDF

To examine the role of the TNF-R superfamily signaling protein TRAF2 in mature B cell development and NF-kappaB activation, conditionally TRAF2-deficient mice were produced. B cells lacking TRAF2 expression in these mice possessed a selective survival advantage, accumulated in the lymph nodes and splenic marginal zone, were larger in size, and expressed increased levels of CD21/35. These TRAF2-deficient B cells could not proliferate or activate the canonical NF-kappaB pathway in response to CD40 ligation.

View Article and Find Full Text PDF

The role of BAFF in B cell self tolerance was examined by tracking the fate of anti-HEL self-reactive B cells in BAFF transgenic mice using four different models of self-reactive B cell deletion. BAFF overexpression did not affect the development of self-reactive B cells normally deleted in the bone marrow or during the early stages of peripheral development. By contrast, self-reactive B cells normally deleted around the late T2 stage of peripheral development were rescued from deletion, matured, and colonized the splenic follicle.

View Article and Find Full Text PDF

Reports of resurgence in invasive group A streptococcal (GAS) infections come mainly from affluent populations with infrequent exposure to GAS. In the Northern Territory (NT) of Australia, high incidence of invasive GAS disease is secondary to endemic skin infection, serotype M1 clones are rare in invasive infection, the diversity and level of exposure to GAS strains are high, and no particular strains dominate. Expression of a plasminogen-binding GAS M-like protein (PAM) has been associated with skin infection in isolates elsewhere (D.

View Article and Find Full Text PDF

In both humans and animals, immunoglobulin (Ig)G autoantibodies are less frequent but more pathogenic than IgM autoantibodies, suggesting that controls over Ig isotype switching are required to reinforce B cell self-tolerance. We have used gene targeting to produce mice in which hen egg lysozyme (HEL)-specific B cells can switch to all Ig isotypes (SWHEL mice). When crossed with soluble HEL transgenic (Tg) mice, self-reactive SWHEL B cells became anergic.

View Article and Find Full Text PDF