Chronic non-healing wounds are characterized by persistent inflammation, excessive matrix-degrading proteolytic activity and compromised extracellular matrix (ECM) synthesis. Previous studies showed that S100A8/A9 are strongly dysregulated in delayed wound healing and impair the proper function of immune cells. Here, we demonstrate an unrecognized pathological function of overexpression in wounds with impaired healing that directly affects ECM functions in fibroblasts.
View Article and Find Full Text PDFEffective tissue response to infection and injury essentially relies on the fine-tuned induction and subsequent resolution of inflammation. Recent research highlighted multiple functions of dermal white adipose tissue (dWAT) beyond its traditional role as an energy reservoir. However, in contrast to other fat depots, there are only limited data about putative immune-regulatory functions of dWAT.
View Article and Find Full Text PDFSignal Transduct Target Ther
October 2023
Hyaluronan (HA) is an extracellular matrix component that regulates a variety of physiological and pathological processes. The function of HA depends both on its overall amount and on its size, properties that are controlled by HA synthesizing and degrading enzymes. The lack of inhibitors that can specifically block individual HA degrading enzymes has hampered attempts to understand the contribution of individual hyaluronidases to different physiological and pathological processes.
View Article and Find Full Text PDF: In obesity the fine-tuned balance of macrophage phenotypes is disturbed towards a dominance of pro-inflammatory macrophages resulting in exacerbation and persistence of inflammation and impaired tissue repair. However, the underlying mechanisms are still poorly understood. : Impact of obesity on macrophage differentiation was studied in high fat diet induced obese and db/db mice during skin inflammation and wound repair, respectively.
View Article and Find Full Text PDFBiomaterials are designed to improve impaired healing of injured tissue. To accomplish better cell integration, we suggest to coat biomaterial surfaces with bio-functional proteins. Here, a mussel-derived surface-binding peptide is used and coupled to CXCL12 (stromal cell-derived factor 1α), a chemokine that activates CXCR4 and consequently recruits tissue-specific stem and progenitor cells.
View Article and Find Full Text PDFNonhealing chronic wounds are among the most common skin disorders with increasing incidence worldwide. However, their treatment is still dissatisfying, that is why novel therapeutic concepts targeting the sustained inflammatory process have emerged. Increasing understanding of chronic wound pathologies has put macrophages in the spotlight of such approaches.
View Article and Find Full Text PDFSustained inflammation associated with dysregulated macrophage activation prevents tissue formation and healing of chronic wounds. Control of inflammation and immune cell functions thus represents a promising approach in the development of advanced therapeutic strategies. Here we describe immunomodulatory hyaluronan/collagen (HA-AC/coll)-based hydrogels containing high-sulfated hyaluronan (sHA) as immunoregulatory component for the modulation of inflammatory macrophage activities in disturbed wound healing.
View Article and Find Full Text PDFBackground: Regenerative therapies based on autologous mesenchymal stem cells (MSC) as well as stem cells in general are still facing an unmet need for non-invasive sampling, availability, and scalability. The only known adult source of autologous MSCs permanently available with no pain, discomfort, or infection risk is the outer root sheath of the hair follicle (ORS).
Methods: This study presents a non-invasively-based method for isolating and expanding MSCs from the ORS (MSCORS) by means of cell migration and expansion in air-liquid culture.
Human and murine skin wounding commonly results in fibrotic scarring, but the murine wounding model wound-induced hair neogenesis (WIHN) can frequently result in a regenerative repair response. Here, we show in single-cell RNA sequencing comparisons of semi-regenerative and fibrotic WIHN wounds, increased expression of phagocytic/lysosomal genes in macrophages associated with predominance of fibrotic myofibroblasts in fibrotic wounds. Investigation revealed that macrophages in the late wound drive fibrosis by phagocytizing dermal Wnt inhibitor SFRP4 to establish persistent Wnt activity.
View Article and Find Full Text PDFIn obesity, hypertrophic adipocytes secrete high amounts of adipocytokines, resulting in low-grade inflammation amplified by infiltrating proinflammatory macrophages, oxidative stress, hypoxia, and lipolysis. These chronic proinflammatory conditions support the development of type II diabetes and cardiovascular diseases, but the mechanisms of obesity-related exacerbation of inflammatory skin disorders like psoriasis are unclear. In this study, we uncovered dietary saturated fatty acids (SFAs) as major risk factors for the amplification of skin inflammation, independent of obesity-related parameters such as fat mass extension, adipocytokine levels, and glucose homeostasis.
View Article and Find Full Text PDFToward the next generation of nerve guidance conduits (NGCs), novel biomaterials and functionalization concepts are required to address clinical demands in peripheral nerve regeneration (PNR). As a biological polymer with bioactive motifs, gelatinous peptides are promising building blocks. In combination with an anhydride-containing oligomer, a dual-component hydrogel system (cGEL) was established.
View Article and Find Full Text PDFExcessive production of inflammatory chemokines can cause chronic inflammation and thus impair cutaneous wound healing. Capturing chemokine signals using wound dressing materials may offer powerful new treatment modalities for chronic wounds. Here, a modular hydrogel based on end-functionalized star-shaped polyethylene glycol (starPEG) and derivatives of the glycosaminoglycan (GAG) heparin was customized for maximal chemokine sequestration.
View Article and Find Full Text PDFIt is well recognized that high molecular weight hyaluronan (H-HA) exerts potent anti-inflammatory effects while its fragmentation into low molecular weight HA (L-HA) is discussed to promote inflammation. Chemical modification of HA with sulfate groups has been shown to foster its anti-inflammatory activity which seems to be maintained in sulfated low molecular weight HA derivatives (sL-HA). However, the molecular mechanisms by which sL-HA produces its anti-inflammatory activity are not understood.
View Article and Find Full Text PDFDynamic alterations of composition and mechanics of the extracellular matrix are suggested to modulate cellular behavior including plasticity of macrophages (MPhs) during wound healing. In this study, engineered 3D fibrillar matrices based on naturally occurring biopolymers (collagen I, glycosaminoglycans (GAGs)) are used to mimic matrix stiffening as well as modification by sulfated and nonsulfated GAGs at different stages of wound healing. Human MPhs are found to sensitively respond to these microenvironmental cues in terms of polarization toward proinflammatory or wound healing phenotypes over 6 days in vitro.
View Article and Find Full Text PDFTight control of inflammation is required for tissue repair and wound healing and depends on alternative polarization of macrophages as checkpoint for inflammatory resolution. Its perturbations lead to impaired regeneration. Administration of cells/cell factors capable of reversing inflammation and rescuing alternative polarization could be promising for treating inflammatory diseases.
View Article and Find Full Text PDFObesity is associated with body fat gain and impaired glucose metabolism. Here, we identified both body fat gain in obesity and impaired glucose metabolism as two independent risk factors for increased serum levels of free fatty acids (FFAs). Since obesity is associated with increased and/or delayed resolution of inflammation observed in various chronic inflammatory diseases such as psoriasis, we investigated the impact of FFAs on human monocyte-derived and mouse bone marrow-derived dendritic cell (DCs) functions relevant for the pathogenesis of chronic inflammation.
View Article and Find Full Text PDFNumerous biological processes (tissue formation, remodelling and healing) are strongly influenced by the cellular microenvironment. Glycosaminoglycans (GAGs) are important components of the native extracellular matrix (ECM) able to interact with biological mediator proteins. They can be chemically functionalized and thereby modified in their interaction profiles.
View Article and Find Full Text PDFThe present study identified miR-638 as one of the most significantly overexpressed miRNAs in metastatic lesions of melanomas compared with primary melanomas. miR-638 enhanced the tumorigenic properties of melanoma cells in vitro and lung colonization in vivo. mRNA expression profiling identified new candidate genes including TP53INP2 as miR-638 targets, the majority of which are involved in p53 signalling.
View Article and Find Full Text PDFArticular cartilage provides life-long weight-bearing and mechanical lubrication with extraordinary biomechanical performance and simple structure. However, articular cartilage is apparently vulnerable to multifactorial damage and insufficient to self-repair, isolated in articular capsule without nerves or blood vessels. Osteoarthritis (OA) is known as a degenerative articular cartilage deficiency progressively affecting large proportion of the world population, and restoration of hyaline cartilage is clinical challenge to repair articular cartilage lesion and recreate normal functionality over long period.
View Article and Find Full Text PDFThe major purpose of the study was to determine if a 5-minute DVD is an effective method for communicating anticipatory guidance to parents at their child's 4-month well-child visit. A total of 84 caregivers were randomly assigned to receive anticipatory guidance through standard care (written anticipatory guidance handout and free talk) or DVD (DVD format + standard care). Participants completed a brief questionnaire immediately before and after their visit.
View Article and Find Full Text PDFIntegration of biomaterials into tissues is often disturbed by unopposed activation of macrophages. Immediately after implantation, monocytes are attracted from peripheral blood to the implantation site where they differentiate into macrophages. Inflammatory signals from the sterile tissue injury around the implanted biomaterial mediate the differentiation of monocytes into inflammatory M1 macrophages (M1) via autocrine and paracrine mechanisms.
View Article and Find Full Text PDFDuring the immune response, the cytokine interleukin 8 (IL-8, CXCL8) functions as a strong chemoattractant for polymorphonuclear leukocytes helping to direct these cells to infected/injured sites. This review focuses on the interaction of IL-8 with sulfated glycosaminoglycans expressed on cell surfaces and the extracellular matrix. This interaction contributes to the recruitment of polymorphonuclear cells from blood, penetration of these cells through the vessel wall, and their directed migration to inflammatory sites.
View Article and Find Full Text PDFThe sequential phases of biomaterial integration and wound healing require different macrophage functions mediated by distinct macrophage subsets. During the initial phase of healing, pro-inflammatory M1 macrophages (MΦ1) are required to clear the wound from microbes and debris; however, their unopposed, persistent activation often leads to disturbed integration of biomaterials and perturbed wound healing. Here we investigated whether pro-inflammatory macrophage functions are affected by immunomodulatory biomaterials based on artificial extracellular matrices (aECM).
View Article and Find Full Text PDF