Publications by authors named "Sandra F H Correia"

The green synthesis of carbon dots (CDs) from natural sources is a challenging goal. Herein CDs are produced from Agapanthus africanus (L.) Hoffmann leaves by carbonization at 200/300 °C for 2/3 h.

View Article and Find Full Text PDF

The growing prevalence of Internet of Things (IoT) devices hinges on resolving the challenge of powering sensors and transmitters. Addressing this, supply-less IoT devices are gaining traction by integrating energy harvesters. This study introduces a temperature sensor devoid of external power sources, achieved through a novel luminescent solar concentrator (LSC) device based on a stretchable, adhesive elastomer.

View Article and Find Full Text PDF

Building-integrated photovoltaics (BIPV) is an emerging technology in the solar energy field. It involves using luminescent solar concentrators to convert traditional windows into energy generators by utilizing light harvesting and conversion materials. This study investigates the application of machine learning (ML) to advance the fundamental understanding of optical material design.

View Article and Find Full Text PDF

Building integrated photovoltaics is a promising strategy for solar technology, in which luminescent solar concentrators (LSCs) stand out. Challenges include the development of materials for sunlight harvesting and conversion, which is an iterative optimization process with several steps: synthesis, processing, and structural and optical characterizations before considering the energy generation figures of merit that requires a prototype fabrication. Thus, simulation models provide a valuable, cost-effective, and time-efficient alternative to experimental implementations, enabling researchers to gain valuable insights for informed decisions.

View Article and Find Full Text PDF

The energy efficiency of buildings can be significantly improved through the use of renewable energy sources. Luminescent solar concentrators (LSCs) appear to be a solution for integrating photovoltaic (PV) devices into the structure of buildings (windows, for instance) to enable low-voltage devices to be powered. Here, we present transparent planar and cylindrical LSCs based on carbon dots in an aqueous solution and dispersed in organic-inorganic hybrid matrices, which present photoluminescent quantum yield values up to 82%, facilitating an effective solar photon conversion.

View Article and Find Full Text PDF

Microalgae, macroalgae and cyanobacteria are photosynthetic microorganisms, prokaryotic or eukaryotic, living in saline or freshwater environments. These have been recognized as valuable carbon sources, able to be used for food, feed, chemicals, and biopharmaceuticals. From the range of valuable compounds produced by these cells, some of the most interesting are the pigments, including chlorophylls, carotenoids, and phycobiliproteins.

View Article and Find Full Text PDF

The Internet of Things (IoT) fosters the development of smart city systems for sustainable living and increases comfort for people. One of the current challenges for sustainable buildings is the optimization of energy management. Temperature monitoring in buildings is of prime importance, as heating account for a great part of the total energy consumption.

View Article and Find Full Text PDF

The poor photochemical stability of R-phycoerythrin (R-PE) has been a bottleneck for its broad-spectrum applications. Inspired by nature, we studied a sustainable strategy of protein cohabitation to enhance R-PE stability by embedding it in a solid matrix of gelatin. Both pure R-PE and fresh phycobiliprotein (PBP) extracts recovered from were studied.

View Article and Find Full Text PDF

Quick Response (QR) codes are a gateway to the Internet of things (IoT) due to the growing use of smartphones/mobile devices and its properties like fast and easy reading, capacity to store more information than that found in conventional codes, and versatility associated to the rapid and simplified access to information. Challenges encompass the enhancement of storage capacity limits and the evolution to a smart label for mobile devices decryption applications. Organic-inorganic hybrids with europium (Eu) and terbium (Tb) ions are processed as luminescent QR codes that are able to simultaneously double the storage capacity and sense temperature in real time using a photo taken with the charge-coupled device of a smartphone.

View Article and Find Full Text PDF

In order to prepare efficient luminescent organic⁻inorganic hybrid materials embedded with a lanthanide (Ln) complex with polycarboxylate ligands, Ln-doped di-ureasils with 4,4-oxybis(benzoic acid) and 1,10-phenanthroline ligands were synthesized via an in-situ sol⁻gel route. The resulting hybrids were structurally, thermally, and optically characterized. The energy levels of the ligands and the host-to-ion and ligand-to-ion energy transfer mechanisms were investigated (including DFT/TD⁻DFT calculations).

View Article and Find Full Text PDF

Luminescent solar concentrators (LSCs) appear as candidates to enhance the performance of photovoltaic (PV) cells and contribute to reduce the size of PV systems, decreasing, therefore, the amount of material needed and thus the cost associated with energy conversion. One way to maximize the device performance is to explore near-infrared (NIR)-emitting centers, resonant with the maximum optical response of the most common Si-based PV cells. Nevertheless, very few examples in the literature demonstrate the feasibility of fabricating LSCs emitting in the NIR region.

View Article and Find Full Text PDF

In this work we proposed a relative humidity (RH) sensor based on a Bragg grating written in an optical fiber, associated with a coating of organo-silica hybrid material prepared by the sol-gel method. The organo-silica-based coating has a strong adhesion to the optical fiber and its expansion is reversibly affected by the change in the RH values (15.0-95.

View Article and Find Full Text PDF