Publications by authors named "Sandra Dromaint"

Neuropeptide Y (NPY) has several receptors; one of them, the neuropeptide Y5 receptor (NPY5) seems involved in feeding behavior in mammals. Although this particular receptor has been extensively studied in the literature, the difficulties encountered to obtain a stable cell line expressing this recombinant receptor have impaired the development of tools necessary to establish its molecular pharmacology. We thus established a method for the functional study of new ligands.

View Article and Find Full Text PDF

Transcriptional mechanisms controlling human UCP3 gene expression in skeletal muscle remain poorly understood. Experiments based on plasmid electrotransfer into tibialis anterior muscle of C57/BL6 male mice were set up in order to functionally analyze the hUCP3 gene promoter. These transfection experiments showed that a 6300 bp region upstream of the transcription initiation site was sufficient to mediate maximal promoter activity.

View Article and Find Full Text PDF

Melatonin has a key role in the circadian rhythm relay to periphery organs. Melatonin exerts its multiple roles mainly through two seven transmembrane domain, G-coupled receptors, namely MT1 or MT2 receptors. A pharmacological characterization of these human cloned melatonin hMT1 and hMT2 receptors stably expressed in HEK-293 or CHO cells is presented using a 2-[125I]-iodo-melatonin binding assay and a [35S]-GTPgammaS functional assay.

View Article and Find Full Text PDF

The neuropeptide Y Y5 receptor gene generates two splice variants, referred to here as Y5(L) (long isoform) and Y5(S) (short isoform). Y5(L) mRNA differs from Y5(S) mRNA in its 5' end, generating a putative open reading frame with 30 additional nucleotides upstream of the initiator AUG compared with the Y5(S) mRNA. The purpose of the present work was to investigate the existence of the Y5(L) mRNA.

View Article and Find Full Text PDF

Uncoupling protein-3 (UCP3), which is expressed abundantly in skeletal muscle, is one of the carrier proteins dissipating the transmitochondrial electrochemical gradient as heat and has therefore been implicated in the regulation of energy metabolism. Myoblasts or differentiated muscle cells in vitro expressed little if any UCP3, compared with the levels detected in biopsies of skeletal muscle. In the present report, we sought to investigate UCP3 mRNA expression in human muscle generated by myoblast transplantation in the skeletal muscle of an immunodeficient mouse model.

View Article and Find Full Text PDF