Key parasite transmission parameters are difficult to obtain from elusive wild animals. For Echinococcus multilocularis, the causative agent of alveolar echinococcosis (AE), the red fox is responsible for most of the environmental contamination in Europe. The identification of individual spreaders of E.
View Article and Find Full Text PDFAlveolar echinococcosis (AE) is a parasitosis that is expanding worldwide, including in Europe. The development of genotypic markers is essential to follow its spatiotemporal evolution. Sequencing of the commonly used mitochondrial genes cob, cox1, and nad2 shows low discriminatory power, and analysis of the microsatellite marker EmsB does not allow nucleotide sequence analysis.
View Article and Find Full Text PDFMolecular identification of rare human infectious pathogens appears to be one of the most relevant current methods for rapid diagnosis and management of patients. PCR techniques, in particular real-time quantitative PCR, are best suited for the detection of DNA from the pathogens, even at low concentrations. Echinococcosis infections are due to helminths of the Echinococcus genus, with closely related species involved in parasitic lesions affecting animals and, accidentally, humans.
View Article and Find Full Text PDFConfirmed diagnosis of alveolar echinococcosis (AE) is based on pathological criteria and molecular evidence. This parasite-borne disease, caused by the cestode Echinococcus multilocularis, sparingly involves humans as a dead-end host. In humans, the parasite mainly colonizes the liver but can colonize any organ and cause atypical forms, often difficult to characterize clinically.
View Article and Find Full Text PDFEchinococcus multilocularis eggs are deposited on the ground with the faeces of the carnivore definitive hosts. A reliable assessment of the spatial distribution of E. multilocularis eggs in environments used by humans is crucial for the prevention of alveolar echinococcosis (AE).
View Article and Find Full Text PDFThe genetic diversity of the parasite , the infectious agent of alveolar echinococcosis, is generally assessed on adult worms after fox necropsy. We aimed to investigate polymorphism through the microsatellite EmsB marker using a noninvasive approach. We tested batches of isolated eggs (1, 5, and 10) from 19 carnivore fecal samples collected in a rural town located in a highly endemic area in France to determine the best strategy to adopt using a minimal quantity of parasite DNA while avoiding genetic profile overlapping in the analysis.
View Article and Find Full Text PDFAssessing the genetic diversity of the parasite Echinococcus multilocularis provides key information about the temporal and spatial strain flow in a given area. Previous studies indicated that a historical endemic area conventionally presents a relatively high genetic diversity, whereas peripheral or newly endemic areas exhibit a more restricted variability of the parasite. The Swiss plateau region is part of the European historically endemic area, and the genetic diversity has already been investigated by assessing either human metacestode isolates or adult worms from foxes.
View Article and Find Full Text PDFThe eggs of Echinococcus multilocularis, the infectious stage, are spread into the environment through wild and domestic carnivore faeces. The spatial location of the faeces containing infective E. multilocularis eggs is a key parameter for studying areas of exposure and understanding the transmission processes to the intermediate hosts and humans.
View Article and Find Full Text PDFAims: Alveolar echinococcosis is a severe chronic helminthic infection that mimics a tumour-like disease. This study aimed at investigating in vitro interactions between Echinococcus multilocularis vesicular fluid (VF) and different immune checkpoints (PD-1/PD-L1, CTLA-4, LAG-3 and TIM-3).
Methods And Results: Peripheral blood mononuclear cells (PBMC) from healthy blood donors were isolated by Ficoll.