Bacterial dihydroxyacetone (Dha) kinases do not exchange the ADP for ATP but utilize a subunit of the phosphoenolpyruvate carbohydrate phosphotransferase system for in situ rephosphorylation of a permanently bound ADP-cofactor. Here we report the 2.1-angstroms crystal structure of the transient complex between the phosphotransferase subunit DhaM of the phosphotransferase system and the nucleotide binding subunit DhaL of the Dha kinase of Lactococcus lactis, the 1.
View Article and Find Full Text PDFDihydroxyacetone (Dha) kinases are a novel family of kinases with signaling and metabolic functions. Here we report the x-ray structures of the transcriptional activator DhaS and the coactivator DhaQ and characterize their function. DhaQ is a paralog of the Dha binding Dha kinase subunit; DhaS belongs to the family of TetR repressors although, unlike all known members of this family, it is a transcriptional activator.
View Article and Find Full Text PDF