We present a method for human brain fixation based on simultaneous perfusion of 4% paraformaldehyde through carotids after a flush with saline. The left carotid cannula is used to perfuse the body with 10% formalin, to allow further use of the body for anatomical research or teaching. The aim of our method is to develop a vascular fixation protocol for the human brain, by adapting protocols that are commonly used in experimental animal studies.
View Article and Find Full Text PDFLittle information is available on the magnetic resonance imaging (MRI) determination of the hippocampal formation (HF) during the perinatal period. However, this exploration is increasingly used, which requires defining visible HF landmarks on MRI images, validated through histological analysis. This study aims to provide a protocol to identify HF landmarks on MRI images, followed by histological validation through serial sections of the temporal lobe of the samples examined, to assess the longitudinal extent of the hippocampus during the perinatal period.
View Article and Find Full Text PDFNanotechnology is a developing field that has boomed in recent years due to the multiple qualities of nanoparticles (NPs), one of which is their antimicrobial capacity. We propose that NPs anchored with 2-(dimethylamino)ethyl methacrylate (DMAEMA) have antibacterial properties and could constitute an alternative tool in this field. To this end, the antimicrobial effects of three quaternised NPs anchored with DMAEMA were studied.
View Article and Find Full Text PDFIntroduction: Neurodegenerative disorders are associated with different pathologies that often co-occur but cannot be measured specifically with in vivo methods.
Methods: Thirty-three brain hemispheres from donors with an Alzheimer's disease (AD) spectrum diagnosis underwent T2-weighted magnetic resonance imaging (MRI). Gray matter thickness was paired with histopathology from the closest anatomic region in the contralateral hemisphere.
Background: Halfway through the 2019−2020 academic year, the entire university system was affected by an exceptional situation caused by the COVID-19 pandemic. Online learning was globally implemented for all degrees to finish the course and to meet academic objectives. This unforeseen change in teaching and subsequent evaluations meant teachers and students had to invest significant effort.
View Article and Find Full Text PDFTau neurofibrillary tangle (NFT) pathology in the medial temporal lobe (MTL) is closely linked to neurodegeneration, and is the early pathological change associated with Alzheimer's disease (AD). To elucidate patterns of structural change in the MTL specifically associated with tau pathology, we compared high-resolution ex vivo MRI scans of human postmortem MTL specimens with histology-based pathological assessments of the MTL. MTL specimens were obtained from twenty-nine brain donors, including patients with AD, other dementias, and individuals with no known history of neurological disease.
View Article and Find Full Text PDFTau protein neurofibrillary tangles are closely linked to neuronal/synaptic loss and cognitive decline in Alzheimer's disease and related dementias. Our knowledge of the pattern of neurofibrillary tangle progression in the human brain, critical to the development of imaging biomarkers and interpretation of in vivo imaging studies in Alzheimer's disease, is based on conventional two-dimensional histology studies that only sample the brain sparsely. To address this limitation, ex vivo MRI and dense serial histological imaging in 18 human medial temporal lobe specimens (age 75.
View Article and Find Full Text PDFThe perinatal period, sensitive for newborn survival, is also one of the most critical moments in human brain development. Perinatal hypoxia due to reduced blood supply to the brain (ischemia) is one of the main causes of neonatal mortality. Brain damage caused by perinatal hypoxia-ischemia (HI) can lead to neuro- and psychological disorders.
View Article and Find Full Text PDFThe hippocampal formation (HF) has an important role in different human capacities, such as memory processing and emotional expression. Both extensive changes and limited variations of its components can cause clinically expressed dysfunctions. Although there remains no effective treatment for diseases caused by pathological changes in this brain region, detection of these changes, even minimally, could allow us to develop early interventions and establish corrective measures.
View Article and Find Full Text PDFThe angular bundle is a white matter fiber fascicle, which runs longitudinally along the parahippocampal gyrus. It is best known for carrying fibers from the entorhinal cortex (EC) to the hippocampus through the perforant and alvear pathways, as well as for carrying hippocampal output to the neocortex, and distributing fibers to polysensory cortex. The angular bundle is already present prenatally at the beginning of the fetal period.
View Article and Find Full Text PDFThe anatomical organization of the lateral prefrontal cortex (LPFC) afferents to the anterior part of the temporal lobe (ATL) remains to be clarified. The LPFC has two subdivisions, dorsal (dLPFC) and ventral (vLPFC), which have been linked to cognitive processes. The ATL includes several different cortical areas, namely, the temporal polar cortex and rostral parts of the perirhinal, inferotemporal, and anterior tip of the superior temporal gyrus cortices.
View Article and Find Full Text PDFThe postnatal development of the human hippocampal formation (HF) is subject of increasing interest due to its implication in important pathologies that hamper the normal development of children. In this work, we present a glimpse of the main events that constitute important milestones in the development and shaping of some of the most important psychological capabilities such as autobiographical memory. We analyzed a total of 21 brains ranging from 27 gestational weeks to 14 years.
View Article and Find Full Text PDF