Cortical hypometabolism on FDG-PET is a well-established neuroimaging biomarker of cognitive impairment in Parkinson's disease (PD), but its pathophysiologic origins are incompletely understood. Cholinergic basal forebrain (cBF) degeneration is a prominent pathological feature of PD-related cognitive impairment and may contribute to cortical hypometabolism through cholinergic denervation of cortical projection areas. Here, we investigated in-vivo associations between subregional cBF volumes on 3T-MRI, cortical hypometabolism on [F]FDG-PET, and cognitive deficits in a cohort of 95 PD participants with varying degrees of cognitive impairment.
View Article and Find Full Text PDFBackground: Peripheral inflammatory immune responses are suggested to play a major role in dopaminergic degeneration in Parkinson's disease (PD). The neutrophil-to-lymphocyte ratio (NLR) is a well-established biomarker of systemic inflammation in PD. Degeneration of the nigrostriatal dopaminergic system can be assessed in vivo using [ I]FP-CIT single photon emission computed tomography imaging of striatal dopamine transporter (DAT) density.
View Article and Find Full Text PDF