Phenotypic screening seeks to identify substances that modulate phenotypes in a desired manner with the aim of progressing first-in-class agents. Successful campaigns require physiological relevance, robust screening, and an ability to deconvolute perturbed pathways. High-content analysis (HCA) is increasingly used in cell biology and offers one approach to prosecution of phenotypic screens, but challenges exist in exploitation where data generated are high volume and complex.
View Article and Find Full Text PDFContinued androgen receptor (AR) expression and signaling is a key driver in castration-resistant prostate cancer (CRPC) after classical androgen ablation therapies have failed, and therefore remains a target for the treatment of progressive disease. Here, we describe the biological characterization of AZD3514, an orally bioavailable drug that inhibits androgen-dependent and -independent AR signaling. AZD3514 modulates AR signaling through two distinct mechanisms, an inhibition of ligand-driven nuclear translocation of AR and a downregulation of receptor levels, both of which were observed in vitro and in vivo.
View Article and Find Full Text PDFVandetanib is a multi-targeted receptor tyrosine kinase inhibitor that is in clinical development for the treatment of solid tumours. This preclinical study examined the inhibition of two key signalling pathways (VEGFR-2, EGFR) at drug concentrations similar to those achieved in the clinic, and their contribution to direct and indirect antitumour effects of vandetanib. For in vitro studies, receptor phosphorylation was assessed by Western blotting and ELISA, cell proliferation was assessed using a cell viability endpoint, and effects on cell cycle determined using flow cytometry.
View Article and Find Full Text PDFVascular Endothelial Growth Factor Receptor (VEGFR) mediated signalling drives angiogenesis. This is predominantly attributed to the activity of VEGFR-2 following binding of VEGF-A. Whether other members of the VEGFR and ligand families such as VEGFR-1 and its ligand Placental Growth Factor (PlGF) can also contribute to developmental and pathological angiogenesis is less clear.
View Article and Find Full Text PDFInhibition of vascular endothelial growth factor-A (VEGF) signaling is a promising therapeutic approach that aims to stabilize the progression of solid malignancies by abrogating tumor-induced angiogenesis. This may be accomplished by inhibiting the kinase activity of VEGF receptor-2 (KDR), which has a key role in mediating VEGF-induced responses. The novel indole-ether quinazoline AZD2171 is a highly potent (IC50 < 1 nmol/L) ATP-competitive inhibitor of recombinant KDR tyrosine kinase in vitro.
View Article and Find Full Text PDFPurpose: Vascular endothelial growth factor (VEGF) plays a key role in tumor angiogenesis and acts as a radiation survival factor for endothelial cells. ZD6474 (N-(4-bromo-2-fluorophenyl)-6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]quinazolin-4-amine) is a potent VEGF receptor 2 (KDR) tyrosine kinase inhibitor (TKI) that has additional activity versus the epidermal growth factor receptor. This study was designed to determine the efficacy of combining ZD6474 and radiotherapy in vivo.
View Article and Find Full Text PDF