Publications by authors named "Sandra Berndt"

Mitogen-activated protein kinase kinase kinase kinase 1 (MAP4K1) is a serine/threonine kinase that acts as an immune checkpoint downstream of T-cell receptor stimulation. MAP4K1 activity is enhanced by prostaglandin E2 (PGE2) and transforming growth factor beta (TGFβ), immune modulators commonly present in the tumor microenvironment. Therefore, its pharmacological inhibition is an attractive immuno-oncology concept for inducing therapeutic T-cell responses in cancer patients.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) are known to facilitate tumor progression by suppressing CD8+ T cells within the tumor microenvironment (TME), thereby also hampering the effectiveness of immune checkpoint inhibitors (ICIs). While systemic depletion of Tregs can enhance antitumor immunity, it also triggers undesirable autoimmune responses. Therefore, there is a need for therapeutic agents that selectively target Tregs within the TME without affecting systemic Tregs.

View Article and Find Full Text PDF

Alternative splicing and multiple transcription start and termination sites can produce a diverse repertoire of mRNA transcript variants from a given gene. While the full picture of the human transcriptome is still incomplete, publicly available RNA datasets have enabled the assembly of transcripts. Using publicly available deep sequencing data from 927 human samples across 48 tissues, we quantified known and new transcript variants, provide an interactive, browser-based application Splice-O-Mat and demonstrate its relevance using adhesion G protein-coupled receptors (aGPCRs) as an example.

View Article and Find Full Text PDF

A large portion of the human GPCRome is still in the dark and understudied, consisting even of entire subfamilies of GPCRs such as odorant receptors, class A and C orphans, adhesion GPCRs, Frizzleds and taste receptors. However, it is undeniable that these GPCRs bring an untapped therapeutic potential that should be explored further. Open questions on these GPCRs span diverse topics such as deorphanisation, the development of tool compounds and tools for studying these GPCRs, as well as understanding basic signalling mechanisms.

View Article and Find Full Text PDF

The adhesion G protein-coupled receptor (aGPCR) GPR126/ADGRG6 plays an important role in several physiological functions, such as myelination or peripheral nerve repair. This renders the receptor an attractive pharmacological target. GPR126 is a mechano-sensor that translates the binding of extracellular matrix (ECM) molecules to its N terminus into a metabotropic intracellular signal.

View Article and Find Full Text PDF

Inhibition of intracellular nicotinamide phosphoribosyltransferase (NAMPT) represents a new mode of action for cancer-targeting antibody-drug conjugates (ADCs) with activity also in slowly proliferating cells. To extend the repertoire of available effector chemistries, we have developed a novel structural class of NAMPT inhibitors as ADC payloads. A structure-activity relationship-driven approach supported by protein structural information was pursued to identify a suitable attachment point for the linker to connect the NAMPT inhibitor with the antibody.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) are used to target cancer cells by means of antibodies directed to tumor-associated antigens, causing the incorporation of a cytotoxic payload into target cells. Here, we characterized the mode of action of ADC costing of a TWEAKR-specific monoclonal antibody conjugated to a small molecule kinesin spindle protein (KSP) inhibitor (KSPi). These TWEAKR-KSPi-ADCs showed strong efficacy in a TWEAKR expressing CT26 colon cancer model in mice.

View Article and Find Full Text PDF

Arrestins regulate a wide range of signaling events, most notably when bound to active G protein-coupled receptors (GPCRs). Among the known effectors recruited by GPCR-bound arrestins are Src family kinases, which regulate cellular growth and proliferation. Here, we focus on arrestin-3 interactions with Fgr kinase, a member of the Src family.

View Article and Find Full Text PDF

Background: Targeted thorium-227 conjugates (TTCs) are an emerging class of targeted alpha therapies (TATs). Their unique mode of action (MoA) is the induction of difficult-to-repair clustered DNA double-strand breaks. However, thus far, their effects on the immune system are largely unknown.

View Article and Find Full Text PDF

Src family kinases (SFKs) are key regulators of cell proliferation, differentiation, and survival. The expression of these non-receptor tyrosine kinases is strongly correlated with cancer development and tumor progression. Thus, this family of proteins serves as an attractive drug target.

View Article and Find Full Text PDF

G protein coupled receptors signal through G proteins or arrestins. A long-standing mystery in the field is why vertebrates have two non-visual arrestins, arrestin-2 and arrestin-3. These isoforms are ~75% identical and 85% similar; each binds numerous receptors, and appear to have many redundant functions, as demonstrated by studies of knockout mice.

View Article and Find Full Text PDF

Several antibody-drug conjugates (ADCs) have failed to achieve a sufficiently large therapeutic window in patients due to toxicity induced by unspecific payload release in the circulation or ADC uptake into healthy organs. Herein, we describe the successful engineering of ADCs consisting of novel linkers, which are efficiently and selectively cleaved by the tumor-associated protease legumain. ADCs generated via this approach demonstrate high potency and a preferential activation in tumors compared to healthy tissue, thus providing an additional level of safety.

View Article and Find Full Text PDF

Lyn kinase (Lck/Yes related novel protein tyrosine kinase) belongs to the family of Src-related non-receptor tyrosine kinases. Consistent with physiological roles in cell growth and proliferation, aberrant function of Lyn is associated with various forms of cancer, including leukemia, breast cancer and melanoma. Here, we determine a 1.

View Article and Find Full Text PDF

Many antibody-drug conjugates (ADCs) have failed to achieve a sufficient therapeutic window in clinical studies either due to target-mediated or off-target toxicities. To achieve an additional safety level, a new class of antibody-prodrug conjugates (APDCs) directed against different targets in solid tumors is here described. The tumor-associated lysosomal endopeptidase legumain with a unique cleavage sequence was utilized for APDC metabolism.

View Article and Find Full Text PDF

Scaffold proteins tether and orient components of a signaling cascade to facilitate signaling. Although much is known about how scaffolds colocalize signaling proteins, it is unclear whether scaffolds promote signal amplification. Here, we used arrestin-3, a scaffold of the ASK1-MKK4/7-JNK3 cascade, as a model to understand signal amplification by a scaffold protein.

View Article and Find Full Text PDF

Members of the orthosomycin family of natural products are decorated polysaccharides with potent antibiotic activity and complex biosynthetic pathways. The defining feature of the orthosomycins is an orthoester linkage between carbohydrate moieties that is necessary for antibiotic activity and is likely formed by a family of conserved oxygenases. Everninomicins are octasaccharide orthosomycins produced by Micromonospora carbonacea that have two orthoester linkages and a methylenedioxy bridge, three features whose formation logically requires oxidative chemistry.

View Article and Find Full Text PDF

The number of cytotoxic payload classes successfully employed in antibody-drug conjugates (ADCs) is still rather limited. The identification of ADC payloads with a novel mode of action will increase therapeutic options and potentially increase the therapeutic window. Herein, we describe the utilization of kinesin spindle protein inhibitors (KSPi) as a novel payload class providing highly potent ADCs against different targets, for instance HER-2 or TWEAKR/Fn14.

View Article and Find Full Text PDF

The purpose of this study was to investigate the antitumor activity of regorafenib and sorafenib in preclinical models of HCC and to assess their mechanism of action by associated changes in protein expression in a HCC-PDX mouse model. Both drugs were administered orally once daily at 10 mg/kg (regorafenib) or 30 mg/kg (sorafenib), which recapitulate the human exposure at the maximally tolerated dose in mice. In a H129 hepatoma model, survival times differed significantly between regorafenib versus vehicle (p=0.

View Article and Find Full Text PDF

A unique aspect of arrestin-3 is its ability to support both receptor-dependent and receptor-independent signaling. Here, we show that inositol hexakisphosphate (IP) is a non-receptor activator of arrestin-3 and report the structure of IP-activated arrestin-3 at 2.4-Å resolution.

View Article and Find Full Text PDF

Purpose: Carbon-11- and fluorine-18-labeled choline derivatives are commonly used in prostate cancer imaging in the clinical setting for staging and re-staging of prostate cancer. Due to a limited detection rate of established positron emission tomography (PET) tracers, there is a clinical need for innovative tumor-specific PET compounds addressing new imaging targets. The aim of this study was to compare the properties of [(18)F]Bombesin (BAY 86-4367) as an innovative biomarker for prostate cancer imaging targeting the gastrin-releasing peptide receptor and [(11)C]Choline ([(11)C]CHO) in a human prostate tumor mouse xenograft model by small animal PET/X-ray computed tomography (CT).

View Article and Find Full Text PDF

Two new classes of radiolabeled GRP receptor antagonists are studied and compared with the well-established statine-based receptor antagonist DOTA-4-amino-1-carboxymethylpiperidine-d-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 (RM2, 1; DOTA:1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid; Sta:(3S,4S)-4-amino-3-hydroxy-6-methylheptanoic acid). The bombesin-based pseudopeptide DOTA-4-amino-1-carboxymethylpiperidine-d-Phe-Gln-Trp-Ala-Val-Gly-His-Leuψ(CHOH-CH2)-(CH2)2-CH3 (RM7, 2), and the methyl ester DOTA-4-amino-1-carboxymethylpiperidine-d-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-OCH3 (ARBA05, 3) analogues are labeled with (111)In and evaluated in vitro in PC-3 cell line and in vivo in PC-3 tumor-bearing nude mice. Antagonist potency was assessed by immunofluorescence-based receptor internalization and Ca(2+) mobilization assays.

View Article and Find Full Text PDF

In vitro folding of G protein-coupled receptors into a detergent environment represents a promising strategy for obtaining sufficient amounts of functional receptor molecules for structural studies. Typically, these preparations exhibit a poor long-term stability especially at the required high protein concentration. Here, we report a protocol for the stabilization of the Escherichia coli-expressed and subsequently folded neuropeptide Y receptor type 2.

View Article and Find Full Text PDF

A protocol for the efficient isotopic labeling of large G protein-coupled receptors with tryptophan in Escherichia coli as expression host was developed that sufficiently suppressed the naturally occurring L-tryptophan indole lyase, which cleaves tryptophan into indole, pyruvate, and ammonia resulting in scrambling of the isotopic label in the protein. Indole produced by the tryptophanase is naturally used as messenger for cell-cell communication. Detailed analysis of different process conducts led to the optimal expression strategy, which mimicked cell-cell communication by the addition of indole during expression.

View Article and Find Full Text PDF

The recombinant expression of human G protein-coupled receptors usually yields low production levels using commonly available cultivation protocols. Here, we describe the development of a high yield production protocol for the human neuropeptide Y receptor type 2 (Y2R), which provides the determination of expression levels in a time, media composition, and process parameter dependent manner. Protein was produced by Escherichia coli in a defined medium composition suitable for isotopic labeling required for investigations by nuclear magnetic resonance spectroscopy.

View Article and Find Full Text PDF

Although highly resolved crystal structures of G protein-coupled receptors have become available within the last decade, the need for studying these molecules in their natural membrane environment, where the molecules are rather dynamic, has been widely appreciated. Solid-state NMR spectroscopy is an excellent method to study structure and dynamics of membrane proteins in their native lipid environment. We developed a reconstitution protocol for the uniformly (15)N labeled Y(2) receptor into a bicelle-like lipid structure with high yields suitable for NMR studies.

View Article and Find Full Text PDF