Human mesenchymal stem cells isolated from amniotic fluid (AF-MSCs) demonstrate the potency for self-renewal and multidifferentiation, and can, therefore, be a potential alternative source of stem cells adapted for therapeutic purposes. The object of this study is to evaluate the efficacy of MSCs from AF when the pregnancy is normal or when the fetus is affected during pregnancy to differentiate into mesodermal lineage tissues and to elucidate epigenetic states responsible for terminal adipogenic and osteogenic differentiation. The morphology of AF-MSCs from two cell sources and the expression of the cell surface-specific (CD44, CD90, and CD105) markers and pluripotency (Oct4, Nanog, Sox2, and Rex1) genes were quite similar and underwent mesodermal lineage differentiation because this is shown by the typical cell morphology and of genes' expression specific for adipogenic (peroxisome proliferator-activated receptor-ɣ, adiponectin) and osteoblastic (alkaline phosphatase, osteopontin, and osteocalcin) differentiation.
View Article and Find Full Text PDFHuman amniotic fluid-derived mesenchymal stem cells (AF-MSCs) are a new potential stem cell source for cell therapy and regenerative medicine. These are fetal mesenchymal stem cells with multilineage differentiation potential found in amniotic fluid. The aim of the present study was to evaluate in vitro differentiation initiation of AF-MSCs into cardiac progenitors upon application of inhibitors of DNA methyltransferases (DNMT), such as Decitabine (DEC; 5-aza-2'-deoxycytidine) and Zebularine (ZEB).
View Article and Find Full Text PDFAmniotic fluid-derived mesenchymal stem cells (AF-MSCs) are autologous to the fetus and represent a potential alternative source for the regenerative medicine and treatment of perinatal disorders. To date, AF-MSCs differentiation capacity to non-mesodermal lineages and epigenetic regulation are still poorly characterized. The present study investigated the differentiation potential of AF-MSCs toward neural-like cells in comparison to the mesodermal myogenic lineage and assessed epigenetic factors involved in tissue-specific differentiation.
View Article and Find Full Text PDFHuman amniotic fluid (AF)-derived mesenchymal stem cells (MSCs) sharing embryonic and adult stem cells characteristics are interesting by their multipotency and the usage for regenerative medicine. However, the usefulness of these cells for revealing the fetal diseases still needs to be assessed. Here, we have analyzed the epigenetic environment in terms of histone modifications in cultures of MSCs derived from AF of normal pregnancies and those with fetal abnormalities.
View Article and Find Full Text PDFHuman amniotic-fluid-derived mesenchymal stem cells (AF-MSCs) are interesting for their multilineage differentiation potential and wide range of therapeutic applications due to the ease of culture expansion. However, MSCs undergo replicative senescence. So far, the molecular mechanisms that underlie fetal diseases and cell senescence are still poorly understood.
View Article and Find Full Text PDFHuman amniotic fluid stem cells have become an attractive stem cell source for potential applications in regenerative medicine and tissue engineering. The aim of this study was to characterize amniotic fluid-derived mesenchymal stem cells (AF-MSCs) from second- and third-trimester of gestation. Using two-stage protocol, MSCs were successfully cultured and exhibited typical stem cell morphological, specific cell surface, and pluripotency markers characteristics.
View Article and Find Full Text PDF