Semin Cell Dev Biol
November 2019
Synaptic Vesicle Protein 2 (SV2) comprises a recently evolved family of proteins unique to secretory vesicles that undergo calcium-regulated exocytosis. In this review we consider SV2s' structural features, evolution, and function and discuss its therapeutic potential as the receptors for an expanding class of drugs used to treat epilepsy and cognitive decline.
View Article and Find Full Text PDFAfter publication of our article [1] it was brought to our attention that a line of code was missing from our program to combine the within-replicate variance and between-replicate variance. This led to an overestimation of the standard errors calculated using the Enrich2 random-effects model.
View Article and Find Full Text PDFDeep mutational scanning is a widely used method for multiplex measurement of functional consequences of protein variants. We developed a new deep mutational scanning statistical model that generates error estimates for each measurement, capturing both sampling error and consistency between replicates. We apply our model to one novel and five published datasets comprising 243,732 variants and demonstrate its superiority in removing noisy variants and conducting hypothesis testing.
View Article and Find Full Text PDFNeurotransmission involves the calcium-regulated exocytic fusion of synaptic vesicles (SVs) and the subsequent retrieval of SV membranes followed by reformation of properly sized and shaped SVs. An unresolved question is whether each SV protein is sorted by its own dedicated adaptor or whether sorting is facilitated by association between different SV proteins. We demonstrate that endocytic sorting of the calcium sensor synaptotagmin 1 (Syt1) is mediated by the overlapping activities of the Syt1-associated SV glycoprotein SV2A/B and the endocytic Syt1-adaptor stonin 2 (Stn2).
View Article and Find Full Text PDFMol Cell Neurosci
November 2014
Huntington's disease (HD) is a single gene disorder produced by expansion of the gene encoding huntingtin (htt), a large protein with features of a multi-functional scaffold. Expansion of htt's polyglutamine domain induces novel, toxic interactions and likely also disrupts normal htt function. Because of its predicted role as a scaffold, pursuit of huntingtin function and HD pathogenesis has focused on identifying htt-interacting proteins.
View Article and Find Full Text PDFThe amyloid precursor protein (APP) has previously been allocated to an organellar pool residing in the Golgi apparatus and in endosomal compartments, and in its mature form to a presynaptic active zone-localized pool. By analyzing homozygous APP knockout mice we evaluated the impact of APP on synaptic vesicle protein abundance at synaptic release sites. Following immunopurification of synaptic vesicles and the attached presynaptic plasma membrane, individual proteins were subjected to quantitative Western blot analysis.
View Article and Find Full Text PDFNeurons express two families of transporter-like proteins - Synaptic Vesicle protein 2 (SV2A, B, and C) and SV2-related proteins (SVOP and SVOPL). Both families share structural similarity with the Major Facilitator (MF) family of transporters. SV2 is present in all neurons and endocrine cells, consistent with it playing a key role in regulated exocytosis.
View Article and Find Full Text PDFACS Chem Neurosci
February 2013
Axonal transport of synaptic vesicle proteins is required to maintain neurons' ability to communicate via synaptic transmission. Neurotransmitter-containing synaptic vesicles are assembled at synaptic terminals via highly regulated endocytosis of membrane proteins. These synaptic vesicle membrane proteins are synthesized in the cell body and transported to synapses in carrier vesicles that make their way down axons via microtubule-based transport utilizing kinesin molecular motors.
View Article and Find Full Text PDFIn cellular and molecular biology, fluorophores are employed to aid in tracking and quantifying molecules involved in cellular function. We previously developed a sensitive single-molecule quantification technique to count the number of proteins and the variation of the protein number over the population of individual subcellular organelles. However, environmental effects on the fluorescent intensity of fluorophores can make it difficult to accurately quantify proteins using these sensitive techniques.
View Article and Find Full Text PDFThis protocol describes a method for determining both the average number and variance of proteins, in the few to tens of copies, in isolated cellular compartments such as organelles and protein complexes. Other currently available protein quantification techniques either provide an average number, but lack information on the variance, or they are not suitable for reliably counting proteins present in the few to tens of copies. This protocol entails labeling of the cellular compartment with fluorescent primary-secondary antibody complexes, total internal reflection fluorescence microscopic imaging of the cellular compartment, digital image analysis and deconvolution of the fluorescence intensity data.
View Article and Find Full Text PDFUptake of neurotransmitters into synaptic vesicles is driven by the proton gradient established across the vesicle membrane. The acidification of synaptic vesicles, therefore, is a crucial component of vesicle function. Here we present measurements of acidification rate constants from isolated, single synaptic vesicles.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
November 2010
Synaptic vesicles are specialized cycling endosomes that contain a unique constellation of membrane proteins. Proteins are sorted to vesicles by short amino acid sequences that serve as binding sites for clathrin adaptor proteins. Here we show that a tyrosine-based endocytosis motif in the vesicle protein SV2 is required for trafficking to synaptic vesicles of both SV2 and the calcium sensor protein synaptotagmin.
View Article and Find Full Text PDFThe size of a synaptic vesicle (SV) is generally thought to be determined by the amount of lipid and membrane protein it contains. Once formed, it is thought to remain constant in size. Using fluorescence correlation spectroscopy and cryogenic electron microscopy, we show that glutamatergic vesicles reversibly increase their size upon filling with glutamate.
View Article and Find Full Text PDFBackground: Synaptic Vesicle Protein 2 (SV2) and SV2-related protein (SVOP) are transporter-like proteins that localize to neurotransmitter-containing vesicles. Both proteins share structural similarity with the major facilitator (MF) family of small molecule transporters. We recently reported that SV2 binds nucleotides, a feature that has also been reported for another MF family member, the human glucose transporter 1 (Glut1).
View Article and Find Full Text PDFThe Synaptic Vesicle Protein 2 (SV2) family of transporter-like proteins is expressed exclusively in vesicles that undergo calcium-regulated exocytosis. Of the three isoforms expressed in mammals, SV2B is the most divergent. Here we report studies of SV2B location and function in the retina.
View Article and Find Full Text PDFSynaptic vesicle protein 2 (SV2) is required for normal calcium-regulated secretion of hormones and neurotransmitters. Neurons lacking the two most widely expressed isoforms, SV2A and SV2B, have a reduced readily releasable pool of synaptic vesicles, indicating that SV2 contributes to vesicle priming. The presence of putative ATP-binding sites in SV2 suggested that SV2 might be an ATP-binding protein.
View Article and Find Full Text PDFReceptors that signal through heterotrimeric [corrected] GTP binding (G) proteins mediate the majority of intercellular communication. Recent evidence suggests that receptors acting through G proteins also transfer signals across the nuclear membrane. Here we present cell fractionation and immunolabeling data showing that the heterotrimeric [corrected] G protein subunit Galphai is associated with mitochondria.
View Article and Find Full Text PDFThe alpha, zeta, and epsilon isoforms of diacylglycerol kinase exhibit a high degree of stereospecificity in the phosphorylation of diacylglycerol. In comparison, a multiple lipid kinase, MuLK, shows much less stereospecificity, phosphorylating 1,2-dioleoylglycerol only approximately 2-3 times more rapidly than 2,3-dioleoylglycerol. The alpha and zeta isoforms of diacylglycerol kinase are inhibited by 2,3-dioleoylglycerol, but not the more substrate-selective epsilon isoform.
View Article and Find Full Text PDFThe endocannabinoids (eCBs) anandamide and 2-arachidonoyl glycerol (2-AG) are inactivated by a two-step mechanism. First, they are carried into cells, and then anandamide is hydrolyzed by fatty acid amide hydrolase (FAAH) and 2-AG by monoacylglycerol lipase (MGL). Here we provide evidence for a previously undescribed MGL activity expressed by microglial cells.
View Article and Find Full Text PDF