Publications by authors named "Sandra Arroyo-Urea"

Although aminergic GPCRs are the target for ~25% of approved drugs, developing subtype selective drugs is a major challenge due to the high sequence conservation at their orthosteric binding site. Bitopic ligands are covalently joined orthosteric and allosteric pharmacophores with the potential to boost receptor selectivity and improve current medications by reducing off-target side effects. However, the lack of structural information on their binding mode impedes rational design.

View Article and Find Full Text PDF

Although aminergic GPCRs are the target for ~25% of approved drugs, developing subtype selective drugs is a major challenge due to the high sequence conservation at their orthosteric binding site. Bitopic ligands are covalently joined orthosteric and allosteric pharmacophores with the potential to boost receptor selectivity, driven by the binding of the secondary pharmacophore to non-conserved regions of the receptor. Although bitopic ligands have great potential to improve current medications by reducing off-target side effects, the lack of structural information on their binding mode impedes rational design.

View Article and Find Full Text PDF

The neuronal calcium sensor 1 (NCS-1), an EF-hand Ca binding protein, and Ric-8A coregulate synapse number and probability of neurotransmitter release. Recently, the structures of Ric-8A bound to Gα have revealed how Ric-8A phosphorylation promotes Gα recognition and activity as a chaperone and guanine nucleotide exchange factor. However, the molecular mechanism by which NCS-1 regulates Ric-8A activity and its interaction with Gα subunits is not well understood.

View Article and Find Full Text PDF

Here we describe the in vivo DNA assembly approach, where molecular cloning procedures are performed using an E. coli recA-independent recombination pathway, which assembles linear fragments of DNA with short homologous termini. This pathway is present in all standard laboratory E.

View Article and Find Full Text PDF

Activation of microglia is an early immune response to damage in the brain. Although a key role for Ca as trigger of microglial activation has been considered, little is known about the molecular scenario for regulating Ca homeostasis in these cells. Taking into account the importance of the endoplasmic reticulum as a cellular Ca store, the sarco(endo)plasmic reticulum Ca -ATPase (SERCA2b) is an interesting target to modulate intracellular Ca dynamics.

View Article and Find Full Text PDF