Biosynthesis of iron-sulphur (Fe-S) proteins is catalysed by multi-protein systems, ISC and SUF. However, 'non-ISC, non-SUF' Fe-S biosynthesis factors have been described, both in prokaryotes and eukaryotes. Here we report in vitro and in vivo investigations of such a 'non-ISC, non SUF' component, the Nfu proteins.
View Article and Find Full Text PDFIn bacteria, Acyl Carrier Protein (ACP) is the central cofactor for fatty acid biosynthesis. It carries the acyl chain in elongation and must therefore interact successively with all the enzymes of this pathway. Yet, ACP also interacts with proteins of diverse unrelated function.
View Article and Find Full Text PDFIron/sulfur (Fe/S) proteins are central to the functioning of cells in both prokaryotes and eukaryotes. Here, we show that the yhgI gene, which we renamed nfuA, encodes a two-domain protein that is required for Fe/S biogenesis in Escherichia coli. The N-terminal domain resembles the so-called Fe/S A-type scaffold but, curiously, has lost the functionally important Cys residues.
View Article and Find Full Text PDFDifferent from eukaryotes, the bacterial signal recognition particle (SRP) receptor lacks a membrane-tethering SRP receptor (SR) beta subunit and is composed of only the SR alpha homologue FtsY. FtsY is a modular protein composed of three domains. The N- and G-domains of FtsY are highly similar to the corresponding domains of Ffh/SRP54 and SR alpha and constitute the essential core of FtsY.
View Article and Find Full Text PDFCotranslational protein targeting in bacteria is mediated by the signal recognition particle (SRP) and FtsY, the bacterial SRP receptor (SR). FtsY is homologous to the SRalpha subunit of eukaryotes, which is tethered to the membrane via its interaction with the membrane-integral SRbeta subunit. Despite the lack of a membrane-anchoring subunit, 30% of FtsY in Escherichia coli are found stably associated with the cytoplasmic membrane.
View Article and Find Full Text PDFCo-translational membrane targeting of proteins by the bacterial signal-recognition particle (SRP) requires the specific interaction of the SRP-ribosome nascent chain complex with FtsY, the bacterial SRP receptor (SR). FtsY is homologous to the SRalpha-subunit of the eukaryotic SR, which is tethered to the endoplasmic-reticulum membrane by its interaction with the integral SRbeta-subunit. In contrast to SRalpha, FtsY is partly membrane associated and partly located in the cytosol.
View Article and Find Full Text PDFJ Mol Microbiol Biotechnol
November 2002
The Tat pathway is distinct from the Sec machinery given its unusual capacity to export folded proteins, which contain a twin-arginine (RR) signal peptide, across the plasma membrane. The functionality of the Tat pathway has been demonstrated for several Gram-negative and Gram-positive mesophilic bacteria. To assess the specificity of the Tat system, and to analyze the capacity of a mesophilic bacterial Tat system to translocate cytoplasmic proteins from hyperthermophilic bacteria, we fused the Thermus thermophilus beta-glycosidase (Glc) to the twin-arginine signal peptide of the E.
View Article and Find Full Text PDF