Publications by authors named "Sandra A Rempel"

Both the induction of SPARC expression and the loss of the p53 tumor suppressor gene are changes that occur early in glioma development. Both SPARC and p53 regulate glioma cell survival by inverse effects on apoptotic signaling. Therefore, during glioma formation, the upregulation of SPARC may cooperate with the loss of p53 to enhance cell survival.

View Article and Find Full Text PDF

Children with high-grade glioma, including diffuse intrinsic pontine glioma (DIPG), have a poor prognosis despite multimodal therapy. Identifying novel therapeutic targets is critical to improve their outcome. We evaluated prognostic roles of telomere maintenance mechanisms in children with HGG, including DIPG.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) have emerged as potential cancer therapeutics; however, their clinical use is hindered by lack of effective delivery mechanisms to tumor sites. Mesenchymal stem cells (MSCs) have been shown to migrate to experimental glioma and to exert anti-tumor effects by delivering cytotoxic compounds. Here, we examined the ability of MSCs derived from bone marrow, adipose tissue, placenta and umbilical cord to deliver synthetic miRNA mimics to glioma cells and glioma stem cells (GSCs).

View Article and Find Full Text PDF

Glioblastomas (GBM), the most common and aggressive type of malignant glioma, are characterized by increased invasion into the surrounding brain tissues. Despite intensive therapeutic strategies, the median survival of GBM patients has remained dismal over the last decades. In this study we examined the expression of miR-145 in glial tumors and its function in glioma cells.

View Article and Find Full Text PDF

Background: Secreted protein acidic and rich in cysteine (SPARC) is overexpressed in astrocytomas (World Health Organization grades II-IV). We previously demonstrated that SPARC promotes glioma migration and invasion-in part, by activating the P38 mitogen-activated protein kinase (MAPK)-heat shock protein (HSP)27 signaling pathway. The commonly lost tumor suppressor phosphatase and tensin homolog (PTEN) suppresses SPARC-induced migration, which is accompanied by suppression of Shc-Ras-Raf-MEK-ERK1/2 and Akt signaling.

View Article and Find Full Text PDF

Glioblastomas (GBM) are characterized by resistance to chemotherapy and radiotherapy, and therefore, alternative therapeutic approaches are needed. TRAIL induces apoptosis in cancer but not in normal cells and is considered to be a promising anti-tumor agent. However, its short in vivo half-life and lack of efficient administration modes are serious impediments to its therapeutic efficacy.

View Article and Find Full Text PDF

Background: The current treatment regimen for glioma patients is surgery, followed by radiation therapy plus temozolomide (TMZ), followed by 6 months of adjuvant TMZ. Despite this aggressive treatment regimen, the overall survival of all surgically treated GBM patients remains dismal, and additional or different therapies are required. Depending on the cancer type, SPARC has been proposed both as a therapeutic target and as a therapeutic agent.

View Article and Find Full Text PDF

We previously demonstrated that secreted protein acidic and rich in cysteine (SPARC) increases heat shock protein 27 (HSP27) expression and phosphorylation and promotes glioma cell migration through the p38 mitogen-activated protein kinase (MAPK)/HSP27 signaling pathway. As different regions of the SPARC protein mediate different SPARC functions, elucidating which SPARC domains regulate HSP27 expression, signaling and migration might provide potential therapeutic strategies to target these functions. To investigate the roles of specific domains, we used an SPARC-green fluorescent protein (GFP) fusion protein and constructs of SPARC-GFP with deletions of either the acidic domain (ΔAcidic) or the epidermal growth factor (EGF)-like module (ΔEGF).

View Article and Find Full Text PDF

We studied the effect of the integrin inhibitor cilengitide in glioma cells. Cilengitide induced cell detachment and decreased cell viability, and induction of autophagy followed by cell apoptosis. In addition, cilengitide decreased the cell renewal of glioma stem-like cells (GSCs).

View Article and Find Full Text PDF

The matricellular SPARC-family member hevin (Sparc-like 1/SPARCL-1/SC1/Mast9) contributes to neural development and alters tumor progression in a range of mammalian models. Based on sequence similarity, we hypothesized that proteolytic digestion of hevin would result in SPARC-like fragments (SLF) that affect the activity and/or location of these proteins. Incubation of hevin with matrix metalloproteinase-3 (MMP-3), a protease known to cleave SPARC, produced a limited number of peptides.

View Article and Find Full Text PDF

SPARC (secreted protein acidic and rich in cysteine) is expressed in all grades of astrocytoma, including glioblastoma (GBM). SPARC suppresses glioma growth but promotes migration and invasion by mediating integrin and growth factor receptor-regulated kinases and their downstream effectors. PTEN (phosphatase and tensin homolog deleted on chromosome 10), which is commonly lost in primary GBMs, negatively regulates proliferation and migration by inhibiting some of the same SPARC-mediated signaling pathways.

View Article and Find Full Text PDF

The extracellular matrix (ECM) exerts powerful control over many cellular phenomena, including stem cell differentiation. As such, design and modulation of ECM analogs to ligate specific integrin is a promising approach to control cellular processes in vitro and in vivo for regenerative medicine strategies. Although fibronectin (FN), a crucial ECM protein in tissue development and repair, and its RGD peptide are widely used for cell adhesion, the promiscuity with which they engage integrins leads to difficulty in control of receptor-specific interactions.

View Article and Find Full Text PDF

Secreted protein acidic and rich in cysteine (SPARC) regulates cell-extracellular matrix interactions that influence cell adhesion and migration. We have demonstrated that SPARC is highly expressed in human gliomas, and it promotes brain tumor invasion in vitro and in vivo. To further our understanding regarding SPARC function in glioma migration, we transfected SPARC-green fluorescent protein (GFP) and control GFP vectors into U87MG cells, and assessed the effects of SPARC on cell morphology, migration, and invasion after 24 h.

View Article and Find Full Text PDF

We characterized the expression and function of the endoplasmic reticulum protein GRP78 in glial tumors. GRP78 is highly expressed in glioblastomas but not in oligodendrogliomas, and its expression is inversely correlated with median patient survival. Overexpression of GRP78 in glioma cells decreases caspase 7 activation and renders the cells resistant to etoposide- and cisplatin-induced apoptosis, whereas silencing of GRP78 decreases cell growth and sensitizes glioma cells to etoposide, cisplatin, and gamma-radiation.

View Article and Find Full Text PDF

Glioblastomas are heterogeneous tumors displaying regions of necrosis, proliferation, angiogenesis, apoptosis and invasion. SPARC, a matricellular protein that negatively regulates angiogenesis and cell proliferation, but enhances cell deadhesion from matrix, is upregulated in gliomas (Grades II-IV). We previously demonstrated that SPARC promotes invasion while concomitantly decreasing tumor growth, in part by decreasing proliferation of the tumor cells.

View Article and Find Full Text PDF

Secreted protein acidic and rich in cysteine (SPARC) is highly expressed in human gliomas and promotes glioma invasion. We have shown by cDNA array analysis that SPARC upregulates membrane type 1-matrix metalloproteinase (MT1-MMP) and matrix metalloproteinase-2 (MMP-2) transcripts. To confirm these findings at the protein level and determine whether SPARC expression correlates with increased MMP activity, we used Western blot to assess the levels of MT1-MMP, and gelatin zymography to assess MMP-2 levels and activity.

View Article and Find Full Text PDF

SPARC, a 32-kDa matricellular glycoprotein, mediates interactions between cells and their extracellular matrix, and targeted deletion of Sparc results in compromised extracellular matrix in mice. Fibronectin matrix provides provisional tissue scaffolding during development and wound healing and is essential for the stabilization of mature extracellular matrix. Herein, we report that SPARC expression does not significantly affect fibronectin-induced cell spreading but enhances fibronectin-induced stress fiber formation and cell-mediated partial unfolding of fibronectin molecules, an essential process in fibronectin matrix assembly.

View Article and Find Full Text PDF

Secreted protein acidic and rich in cysteine (SPARC) has a suppressive effect on U87 glioma cell proliferation when assessed in vitro and in vivo using parental U87T2 and U87T2-derived SPARC-transfected clones. Since SPARCinteracts with extracellular matrix (ECM) proteins, we examined the effect of SPARC secretion on proliferation, morphology, and cell density of glioma cells grown in vitro, in the absence and presence of ECM proteins under standard (10% fetal bovine serum [FBSI) and reduced (0.1% FBS) serum stress conditions.

View Article and Find Full Text PDF

Purpose: In a study of 208 meningiomas, we found a high incidence of loss of heterozygosity (LOH) on chromosome 10 in benign (73.4%), atypical (80.0%), and malignant (86.

View Article and Find Full Text PDF

Purpose: Loss of heterozygosity (LOH) of alleles on chromosome 10 has been reported in many cancers, leading to the identification of tumor suppressor genes on this chromosome. Several reports implicate LOH of chromosome 10 alleles in meningioma progression, but the frequency and complexity of the loss have not been well characterized. Furthermore, the location and identity of the putative tumor suppressor genes on this chromosome that contribute to meningioma progression are unknown because the currently characterized tumor suppressor genes do not appear to be involved.

View Article and Find Full Text PDF

We have demonstrated that secreted protein acidic and rich in cysteine (SPARC) is highly expressed in human gliomas and it promotes glioma invasion and delays tumor growth in vitro and in vivo. cDNA array analyses were performed to determine whether SPARC, which interacts at the cell surface, has an impact on intracellular signaling and downstream gene expression changes, which might account for some of its effects on invasion and growth. Using a doxycycline (dox)-controlled gene expression system, two cDNA array analyses were performed using a parental U87T2 clone (-SPARC) transfected with the dox-controlled transactivator and a U87T2 parental-derived SPARC-transfected clone, A2b2 (+SPARC).

View Article and Find Full Text PDF

Secreted protein acidic and rich in cysteine (SPARC) is highly expressed in human astrocytomas, grades II-IV. We demonstrated previously that SPARC promotes invasion in vitro using the U87MG-derived clone U87T2 and U87T2-derived SPARC-transfected clones, A2b2, A2bi, and C2a4, in the spheroid confrontation assay. Additional in vitro studies demonstrated that SPARC delays growth, increases attachment, and modulates migration of tumor cells in extracellular matrix-specific and concentration-dependent manners.

View Article and Find Full Text PDF