Cognitive decline is a major health concern and identification of genes that may serve as drug targets to slow decline is important to adequately support an aging population. Whilst genetic studies of cross-sectional cognition have been carried out, cognitive change is less well-understood. Here, using data from the TOMMORROW trial, we investigate genetic associations with cognitive change in a cognitively normal older cohort.
View Article and Find Full Text PDFAs findings on the epidemiological and genetic risk factors for coronavirus disease-19 (COVID-19) continue to accrue, their joint power and significance for prospective clinical applications remains virtually unexplored. Severity of symptoms in individuals affected by COVID-19 spans a broad spectrum, reflective of heterogeneous host susceptibilities across the population. Here, we assessed the utility of epidemiological risk factors to predict disease severity prospectively, and interrogated genetic information (polygenic scores) to evaluate whether they can provide further insights into symptom heterogeneity.
View Article and Find Full Text PDFObjective: The UK Biobank provides a rich collection of longitudinal clinical data coming from different healthcare providers and sources in England, Wales, and Scotland. Although extremely valuable and available to a wide research community, the heterogeneous dataset contains inconsistent medical terminology that is either aligned to several ontologies within the same category or unprocessed. To make these data useful to a research community, data cleaning, curation, and standardization are needed.
View Article and Find Full Text PDFParkinson's disease (PD) treatments modify disease symptoms but have not been shown to slow progression, characterized by gradual and varied motor and non-motor changes overtime. Variation in PD progression hampers clinical research, resulting in long and expensive clinical trials prone to failure. Development of models for short-term PD progression prediction could be useful for shortening the time required to detect disease-modifying drug effects in clinical studies.
View Article and Find Full Text PDFThe SARS-CoV-2 pandemic has differentially impacted populations across race and ethnicity. A multi-omic approach represents a powerful tool to examine risk across multi-ancestry genomes. We leverage a pandemic tracking strategy in which we sequence viral and host genomes and transcriptomes from nasopharyngeal swabs of 1049 individuals (736 SARS-CoV-2 positive and 313 SARS-CoV-2 negative) and integrate them with digital phenotypes from electronic health records from a diverse catchment area in Northern California.
View Article and Find Full Text PDFThe UK Biobank Exome Sequencing Consortium (UKB-ESC) is a private-public partnership between the UK Biobank (UKB) and eight biopharmaceutical companies that will complete the sequencing of exomes for all ~500,000 UKB participants. Here, we describe the early results from ~200,000 UKB participants and the features of this project that enabled its success. The biopharmaceutical industry has increasingly used human genetics to improve success in drug discovery.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), a respiratory illness that can result in hospitalization or death. We used exome sequence data to investigate associations between rare genetic variants and seven COVID-19 outcomes in 586,157 individuals, including 20,952 with COVID-19. After accounting for multiple testing, we did not identify any clear associations with rare variants either exome wide or when specifically focusing on (1) 13 interferon pathway genes in which rare deleterious variants have been reported in individuals with severe COVID-19, (2) 281 genes located in susceptibility loci identified by the COVID-19 Host Genetics Initiative, or (3) 32 additional genes of immunologic relevance and/or therapeutic potential.
View Article and Find Full Text PDFNetworks are a powerful and flexible methodology for expressing biological knowledge for computation and communication. Network-encoded information can include systematic screens for molecular interactions, biological relationships curated from literature, and outputs from analysis of Big Data. NDEx, the Network Data Exchange (www.
View Article and Find Full Text PDFBackground: The growing consensus that most valuable data source for biomedical discoveries is derived from human samples is clearly reflected in the growing number of translational medicine and translational sciences departments across pharma as well as academic and government supported initiatives such as Clinical and Translational Science Awards (CTSA) in the US and the Seventh Framework Programme (FP7) of EU with emphasis on translating research for human health.
Methods: The pharmaceutical companies of Johnson and Johnson have established translational and biomarker departments and implemented an effective knowledge management framework including building a data warehouse and the associated data mining applications. The implemented resource is built from open source systems such as i2b2 and GenePattern.
We develop a general method to identify gene networks from pair-wise correlations between genes in a microarray data set and apply it to a public prostate cancer gene expression data from 69 primary prostate tumors. We define the degree of a node as the number of genes significantly associated with the node and identify hub genes as those with the highest degree. The correlation network was pruned using transcription factor binding information in VisANT (http://visant.
View Article and Find Full Text PDFBackground: We have identified a set of genes whose relative mRNA expression levels in various solid tumors can be used to robustly distinguish cancer from matching normal tissue. Our current feature set consists of 113 gene probes for 104 unique genes, originally identified as differentially expressed in solid primary tumors in microarray data on Affymetrix HG-U133A platform in five tissue types: breast, colon, lung, prostate and ovary. For each dataset, we first identified a set of genes significantly differentially expressed in tumor vs.
View Article and Find Full Text PDFWe have created a stand-alone software tool, ConsensusCluster, for the analysis of high-dimensional single nucleotide polymorphism (SNP) and gene expression microarray data. Our software implements the consensus clustering algorithm and principal component analysis to stratify the data into a given number of robust clusters. The robustness is achieved by combining clustering results from data and sample resampling as well as by averaging over various algorithms and parameter settings to achieve accurate, stable clustering results.
View Article and Find Full Text PDFWe have recently reported a mutation within the conserved immunoglobulin V-type domain of the predicted adhesion protein Mpzl3 (MIM 611707) in rough coat (rc) mice with severe skin abnormalities and progressive cyclic hair loss. In this study, we tested the hypothesis that the human orthologue MPZL3 on chromosome 11q23.3 is a candidate for similar symptoms in humans.
View Article and Find Full Text PDFCa(2+)-loaded calmodulin normally inhibits multiple Ca(2+)-channels upon dangerous elevation of intracellular Ca(2+) and protects cells from Ca(2+)-cytotoxicity, so blocking of calmodulin should theoretically lead to uncontrolled elevation of intracellular Ca(2+). Paradoxically, classical anti-psychotic, anti-calmodulin drugs were noted here to inhibit Ca(2+)-uptake via the vanilloid inducible Ca(2+)-channel/inflamatory pain receptor 1 (TRPV1), which suggests that calmodulin inhibitors may block pore formation and Ca(2+) entry. Functional assays on TRPV1 expressing cells support direct, dose-dependent inhibition of vanilloid-induced (45)Ca(2+)-uptake at microM concentrations: calmidazolium (broad range) > or = trifluoperazine (narrow range) chlorpromazine/amitriptyline>fluphenazine>>W-7 and W-13 (only partially).
View Article and Find Full Text PDFMolecular modeling was used to analyze the binding mode and activities of histamine H3 receptor antagonists. A model of the H3 receptor was constructed through homology modeling methods based on the crystal structure of bovine rhodopsin. Known H3 antagonists were interactively docked into the putative antagonist binding pocket and the resultant model was subjected to molecular mechanics energy minimization and molecular dynamics simulations which included a continuum model of the lipid bilayer and intra- and extracellular aqueous environments surrounding the transmembrane helices.
View Article and Find Full Text PDFThe mitochondrial membrane protein termed "mitoNEET," is a putative secondary target for insulin-sensitizing thiazolidinedione (TZD) compounds but its role in regulating metabolic flux is not known. PNU-91325 is a thiazolidinedione derivative which exhibits high binding affinity to mitoNEET and lowers cholesterol, fatty acid and blood glucose levels in animal models. In this study we report the stable isotope-based dynamic metabolic profiles (SIDMAP) of rosiglitazone, pioglitazone and PNU-91325 in a dose-matching, dose-escalating study.
View Article and Find Full Text PDFA range of methods has been developed to predict transmembrane helices and their topologies. Although most of these algorithms give good predictions, no single method consistently outperforms the others. However, combining different algorithms is one approach that can potentially improve the accuracy of the prediction.
View Article and Find Full Text PDFThis paper presents new methods designed for quantitative analysis of chemical shift perturbation NMR spectra. The methods automatically trace the displacements of cross peaks between a perturbed test spectrum and the reference spectrum (or among a series of titration spectra), and measure the changes of chemical shifts, heights, and widths of the altered peaks. The methods are primary aimed at the (1)H-(15)N HSQC spectra of relatively small proteins (<15 kDa) assuming fast exchange between free and ligand-bound states on the chemical shift time scale, or for comparing spectra of free and fully bound states in the slow exchange situation.
View Article and Find Full Text PDFThe ability to rapidly and reliably develop hypotheses on the function of newly discovered protein sequences requires systematic and comprehensive analysis. Such an analysis, embodied within the DS GeneAtlas pipeline, has been used to critically evaluate the severe acute respiratory syndrome (SARS) genome with the goal of identifying new potential targets for viral therapeutic intervention. This paper discusses several new functional hypotheses on the roles played by the constituent gene products of SARS, and will serve as an example of how such assignments can be developed or extended on other systems of interest.
View Article and Find Full Text PDFProposed is a method for locating functionally relevant atoms in protein structures and a representation of spatial arrangements of these atoms allowing for a flexible description of active sites in proteins. The search method is based on comparison of local structure features of proteins that share a common biochemical function. The method does not depend on overall similarity of structures and sequences of compared proteins or on previous knowledge about functionally relevant residues.
View Article and Find Full Text PDFTo maximise the assignment of function of the proteins encoded by a genome and to aid the search for novel drug targets, there is an emerging need for sensitive methods of predicting protein function on a genome-wide basis. GeneAtlas is an automated, high-throughput pipeline for the prediction of protein structure and function using sequence similarity detection, homology modelling and fold recognition methods. GeneAtlas is described in detail here.
View Article and Find Full Text PDF