Publications by authors named "Sandor Levai"

The V1a receptor is a major contributor in mediating the social and emotional effects of arginine-vasopressin (AVP); therefore it represents a promising target in the treatment of several neuropsychiatric conditions. The aim of this research was to design and synthesize novel and selective V1a antagonists with improved and profiles. Through optimization and detailed SAR studies, we developed low nanomolar antagonists, and further characterizations led to the discovery of the clinical candidate compound (RGH-122).

View Article and Find Full Text PDF

A new class of selective vasopressin receptor 1A (V) antagonists was identified, where "methyl-scan" was performed around the benzene ring of the 5-hydroxy-triazolobenzazepine core. This led to the synthesis of two 10-methyl derivatives, each possessing a chiral axis and a stereogenic center. The four atropisomeric stereoisomers (involving two enantiomer pairs and atropisomeric diastereomers) could be successfully isolated and spectroscopically characterized.

View Article and Find Full Text PDF

Hydroxycinnamic acids represent a versatile group of dietary plant antioxidants. Oxidation of methyl--coumarate () and methyl caffeate () was previously found to yield potent antitumor metabolites. Here, we report the formation of potentially bioactive products of and oxidized with peroxynitrite (ONOO¯), a biologically relevant reactive nitrogen species (RNS), or with α,α'-azodiisobutyramidine dihydrochloride (AAPH) as a chemical model for reactive oxygen species (ROS).

View Article and Find Full Text PDF

New enantiopure dimethyl-substituted acridino-18-crown-6 and acridino-21-crown-7 ethers containing a carboxyl group at position 9 of the acridine ring [(S,S)-8, (S,S)-9, (R,R)-10] were synthesized. The pK values of the new crown ethers [(S,S)-8, (S,S)-9, (R,R)-10] and of an earlier reported macrocycle [(R,R)-2] were determined by UV-pH titrations. Crown ether (S,S)-8 was attached to silica gel by covalent bonds and the enantiomeric separation ability of the newly prepared chiral stationary phase [(S,S)-CSP-12] was studied by high-performance liquid chromatography (HPLC).

View Article and Find Full Text PDF

This paper reports the enantioseparation ability of a pyridino-18-crown-6 ether-based chiral stationary phase [(S,S)-CSP-1]. The enantiomeric discrimination of chiral stationary phase (S,S)-CSP-1 was evaluated by HPLC using the mixtures of enantiomers of various protonated primary aralkylamines [1-phenylethylamine hydrogen perchlorate (PEA), 2,3-dihydro-1H-inden-1-amine (1-aminoindan), 2,2'-(1,2-diaminoethane-1,2-diyl) diphenol (HPEN)] and perchlorate salts of α-amino acid esters [alanine benzyl ester (Ala-OBn), phenylalanine benzyl ester (Phe-OBn), phenylalanine methyl ester (Phe-OMe), phenylglycine methyl ester (PhGly-OMe), glutamic acid dibenzyl ester (Glu-diOBn), and valine benzyl ester (Val-OBn)]. The best enantioseparation was achieved in the case of PEA.

View Article and Find Full Text PDF

This paper reports a novel method for the preparation of chiral stationary phases (CSPs) using an acridino-18-crown-6 ether selector as a model compound. Chiral stationary phase (R,R)-CSP- 2A: was obtained by in situ continuously recirculating the solution of carboxyl-substituted acridino-18-crown-6 ether (R,R)- 4: , dicyclohexylcarbodiimide and 3-(triethoxysilyl)propylamine through a high-performance liquid chromatography (HPLC) column containing blank silica gel in elevated pressure and temperature. The enantiomer separating ability of chiral stationary phase (R,R)-CSP- 2A: was investigated by HPLC using mixtures of enantiomers of 1-(1-naphthyl)ethylamine hydrogen perchlorate, 1-(2-naphthyl)ethylamine, 1-(4-bromophenyl)ethylamine and 1-(4-nitrophenyl)ethylamine hydrogen chloride.

View Article and Find Full Text PDF

The enantiomeric separation ability of the newly prepared chiral stationary phases containing acridino-18-crown-6 ether selectors was studied by high-performance liquid chromatography (HPLC). The chiral stationary phases separated the enantiomers of selected protonated primary aralkylamines efficiently. The best results were found for the separation of the mixtures of enantiomers of NO2 -PEA.

View Article and Find Full Text PDF