Although many redox signaling molecules are present at low concentrations, typically ranging from micromolar to submicromolar levels, they often play essential roles in a wide range of biological pathways and disease mechanisms. However, accurately measuring low-abundant analytes has been a significant challenge due to the lack of sensitivity and quantitative capability of existing measurement methods. In this study, we introduced a novel chemically induced amplifiable system for quantifying low-abundance redox signaling molecules in living cells.
View Article and Find Full Text PDFSteroid receptor coactivator 3 (SRC-3) is a critical mediator of many intracellular signaling pathways that are crucial for cancer proliferation and metastasis. In this study, we performed structure-activity relationship exploration and drug-like optimization of the hit compound , guided by / metabolism studies and cytotoxicity assays. Our efforts led to the discovery of two lead compounds, and .
View Article and Find Full Text PDFA series of Chk1 degraders were designed and synthesized. The degraders were developed through the conjugation of a promiscuous kinase binder and thalidomide. One of the degraders PROTAC-2 was able to decrease Chk1 levels in a concentration-dependent manner in A375 cells.
View Article and Find Full Text PDFThe introduction of noncanonical amino acids into proteins and peptides has been of great interest for many years and has facilitated the detailed study of peptide/protein structure and mechanism. In addition to numerous nonproteinogenic α-l-amino acids, bacterial ribosome modification has provided the wherewithal to enable the synthesis of peptides and proteins with a much greater range of structural diversity, as has the use of endogenous bacterial proteins in reconstituted protein synthesizing systems. In a recent report, elongation factor P (EF-P), putatively essential for enabling the incorporation of contiguous proline residues into proteins, was shown to facilitate the introduction of an N-methylated amino acid in addition to proline.
View Article and Find Full Text PDFIn the scope of targeted protein degradation (TPD), proteolysis-targeting chimeras (PROTACs), leveraging the ubiquitin-proteasome system, have been extensively studied. However, they are limited to the degradation of soluble and membrane proteins, excluding the aggregated and extracellular proteins and dysfunctional organelles. As an alternative protein degradation pathway, lysosomes serve as a feasible tool for accessing these untouched proteins and/or organelles by proteosomes.
View Article and Find Full Text PDFAim: This study aims to report preclinical validation, and the first clinical treatment of total bone marrow irradiation (TMI) and total bone marrow and lymph nodal irradiation (TMLI) using Volumetric modulated arc therapy in Halcyon-E ring gantry linear accelerator. Preclinical validation includes simulation, planning, patient-specific QA, and dry run.
Material And Method: Four patients, two female and two male, with body weights of 116 kg, 52 kg, 64 kg, and 62 kg; with two with chronic myeloid leukemia, one each with acute lymphoblastic leukemia and acute myeloid leukemia (AML) were simulated and planned for TMI/TMLI.
Bioorg Med Chem Lett
January 2019
Here we present a virtual docking screen of 1648 commercially available covalent fragments, and identified covalent inhibitors of cysteine protease cathepsin L. These inhibitors did not inhibit closely related protease cathepsin B. Thus, we have established virtual docking of covalent fragments as an approach to discover covalent enzyme inhibitors.
View Article and Find Full Text PDFFriedreich's ataxia (FRDA) is a progressive neurodegenerative disease that is linked to transcriptional repression of the nuclear FXN gene encoding the essential mitochondrial protein frataxin (FXN). Compounds that increase frataxin levels may enable effective therapeutic intervention for blunting disease progression. Recently, we showed that lipophilic methylene violet (MV) and methylene blue (MB) analogues both conferred benefit to cultured FRDA cells in several regards, including ROS suppression, maintenance of mitochondrial membrane potential and increased ATP production.
View Article and Find Full Text PDFAs part of an ongoing program to develop potential therapeutic agents for the treatment of the neurodegenerative disease Friedreich׳s ataxia (FRDA), we have prepared a number of lipophilic methylene blue analogues. Some of these compounds significantly increase mitochondrial biogenesis and frataxin levels in cultured Friedreich's ataxia cells [1]. This data article describes the chemical synthesis and full physicochemical characterization of the new analogues.
View Article and Find Full Text PDFFriedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disorder resulting from reduced expression of the protein frataxin (FXN). Although its function is not fully understood, frataxin appears to help assemble iron sulfur clusters; these are critical for the function of many proteins, including those needed for mitochondrial energy production. Finding ways to increase FXN levels has been a major therapeutic strategy for this disease.
View Article and Find Full Text PDFIn an effort to identify methylene blue analogues having improved antioxidant activity, a series of new methylene violet analogues have been designed and synthesized. The analogues were prepared following a synthetic route that is more efficient than the previously reported methods, both in terms of yield and purity of the final products. The route involves the Smiles rearrangement as one of the crucial steps.
View Article and Find Full Text PDFDescribed herein are the synthesis and photophysical characterization of a library of aryl-substituted oxazole- and thiazole-based dipeptidomimetic analogues, and their incorporation into position 66 of green fluorescent protein (GFP) in lieu of the natural fluorophore. These fluorescent analogues resemble the fluorophore formed naturally by GFP. As anticipated, the photophysical properties of the analogues varied as a function of the substituents at the para position of the phenyl ring.
View Article and Find Full Text PDFThe synthesis and incorporation into position 66 of green fluorescent protein (GFP) by in vitro protein translation of novel oxazole and thiazole based dipeptidomimetics are described. The compounds may be regarded as GFP chromophore analogues, and are strongly fluorescent. An α-amido-β-ketoester intermediate was obtained via bisacylation of a protected glycine.
View Article and Find Full Text PDFPlasmids containing 23S rRNA randomized at positions 2057-2063 and 2502-2507 were introduced into Escherichia coli, affording a library of clones which produced modified ribosomes in addition to the pre-existing wild-type ribosomes. These clones were screened with a derivative of puromycin, a natural product which acts as an analogue of the 3'-end of aminoacyl-tRNA and terminates protein synthesis by accepting the growing polypeptide chain, thereby killing bacterial cells. The puromycin derivative in this study contained the dipeptide p-methoxyphenylalanylglycine, implying the ability of the modified ribosomes in clones sensitive to this puromycin analogue to recognize dipeptides.
View Article and Find Full Text PDFIn an earlier study, β³-puromycin was used for the selection of modified ribosomes, which were utilized for the incorporation of five different β-amino acids into Escherichia coli dihydrofolate reductase (DHFR). The selected ribosomes were able to incorporate structurally disparate β-amino acids into DHFR, in spite of the use of a single puromycin for the selection of the individual clones. In this study, we examine the extent to which the structure of the β³-puromycin employed for ribosome selection influences the regio- and stereochemical preferences of the modified ribosomes during protein synthesis; the mechanistic probe was a single suppressor tRNA(CUA) activated with each of four methyl-β-alanine isomers (1-4).
View Article and Find Full Text PDFRibosomes containing modifications in three regions of 23S rRNA, all of which are in proximity to the ribosomal peptidyltransferase center (PTC), were utilized previously as a source of S-30 preparations for in vitro protein biosynthesis experiments. When utilized in the presence of mRNAs containing UAG codons at predetermined positions+β-alanyl-tRNA(CUA), the modified ribosomes produced enhanced levels of full length proteins via UAG codon suppression. In the present study, these earlier results have been extended by the use of substituted β-amino acids, and direct evidence for β-amino acid incorporation is provided.
View Article and Find Full Text PDF