Breast invasive carcinoma (BRCA) is the most malignant and leading cause of death in women. Global efforts are ongoing for improvement in early detection, prevention, and treatment. In this milieu, a comprehensive analysis of RNA-sequencing data of 1097 BRCA samples and 114 normal adjacent tissues is done to identify dysregulated genes in major molecular classes of BRCA in various clinical stages.
View Article and Find Full Text PDFSilent mating type information regulation 2 homolog 1 (SIRT1) is a class III histone deacetylase (HDAC) that is NADā+ādependent and essential for metabolism, senescence, and cell survival. SIRT1 is overexpressed in several cancers, including breast cancer. SIRT1 is a well-known target gene of the estrogen receptor alpha (ER alpha) and is closely related to ER alpha deacetylation.
View Article and Find Full Text PDFBreast cancer morbidity is surging towards the peak in females across the globe. An inherent property of cancer cells is enhanced cell proliferation rate and migration capability, leading to deregulated cell signaling cascades. G-protein-coupled receptors (GPCRs) have recently emerged as a hot-spot target in cancer research.
View Article and Find Full Text PDFComposite materials are emerging as a vital entity for the sustainable development of both humans and the environment. Polylactic acid (PLA) has been recognized as a potential polymer candidate with attractive characteristics for applications in both the engineering and medical sectors. Hence, the present article throws lights on the essential physical and mechanical properties of PLA that can be beneficial for the development of composites, biocomposites, films, porous gels, and so on.
View Article and Find Full Text PDFSulfatase enzymes catalyze sulfate ester hydrolysis, thus deficiencies of sulfatases lead to the accumulation of biomolecules resulting in several disorders. One of the important sulfatases is estrone sulfatase that converts inactive estrone sulfate to active estradiol. Posttranslational modification of highly conserved cysteine residue leads to unique formylglycine in the active site of sulfatases being critical for its catalytic activity.
View Article and Find Full Text PDFThe onychomycosis treatment remains a big challenge for onychologist due to the shorter nail residence time of topical formulations and the lack of availability of novel formulations in markets for new generation antifungal drugs. The objective of this work was to design, develop, optimize, and evaluate microemulsion formulations for effective delivery of efinaconazole through transungual route in onychomycosis treatment. CapmulĀ® MCM (Glyceryl Caprylate/Caprate) as oil, LabrasolĀ® (caprylocaproyl polyoxyl-8 glycerides) as a surfactant, and TranscutolĀ® P (diethylene glycol monoethyl ether) as co-surfactant exhibited higher solubility of efinaconazole and surfactant-cosurfactant mixture (Smix) in a ratio of 1:1 rendered higher microemulsion region in the pseudo-ternary phase diagram.
View Article and Find Full Text PDFThe major antioxidant enzyme catalase is downregulated and the enzyme activity is compromised in various disease conditions such as malarial and cancer. Hence, the restoration and protection of catalase is a promising therapeutic strategy in disease management. In the present study, for the first time we have demonstrated the protective role of well-known anti-malarial drug Artemisinin (ART) on the time and temperature-induced degradation of bovine liver catalase (BLC) activity.
View Article and Find Full Text PDFBackground: Acquired resistance to drug involves multilayered genetic and epigenetic regulation. Inhibition of EZH2 has proven to reverse the tamoxifen resistance back to the sensitive state in breast cancer. However, the molecular players involved in EZH2-mediated effects on tamoxifen-resistant MCF-7 cells are unknown.
View Article and Find Full Text PDFEstrogen-related receptor beta (ERRĪ²) is downregulated in breast cancer cells and its overexpression in breast cancer patients is positively correlated with an improved prognosis and prolonged relapse-free survival. Here, we unravelled a molecular mechanism for ERRĪ² downregulation in breast cancer. We found that ERRĪ² is a key substrate of the SCF complex and that NEDDylation can activate the Cullin subunits of the SCF complex to target ERRĪ² for degradation in breast cancer.
View Article and Find Full Text PDFSeveral pioneering work have established that apart from genetic alterations, epigenetic modifications contribute significantly in tumor progression. Remarkable role of EZH2 in cancer highlights the importance of identifying its targets. Although much emphasis has been placed in recent years in designing drugs and inhibitors targeting EZH2, less effort has been given in exploring its existing targets that will help in understanding the oncogenic role of EZH2 in turn which may provide a more stringent method of targeting EZH2.
View Article and Find Full Text PDFBackground: Orphan nuclear receptors ERRĪ±, ERRĪ² and ERRĪ³ that belong to NR3B or type IV nuclear receptor family are well studied for their role in breast cancer pathophysiology. Their homology with the canonical estrogen receptor dictates their possible contributing role in mammary gland development and disease. Although function and regulation of ERRĪ±, ERRĪ³ and less about ERRĪ² is reported, role of histone methylation in their altered expression in cancer cells is not studied.
View Article and Find Full Text PDFBackground: Breast cancer (BC) is highly heterogeneous with ~ā60-70% of estrogen receptor positive BC patient's response to anti-hormone therapy. Estrogen receptors (ERs) play an important role in breast cancer progression and treatment. Estrogen related receptors (ERRs) are a group of nuclear receptors which belong to orphan nuclear receptors, which have sequence homology with ERs and share target genes.
View Article and Find Full Text PDFBreast cancer (BC) is one of the most common types of cancer in women worldwide. Several factors including genetic and environmental have been linked with susceptibility to development of BC. Her2 is a transmembrane protein with tyrosine kinase activity, overexpressed in several cancers including BC.
View Article and Find Full Text PDFRecent studies show substantial growth-promoting properties of nicotine (NIC) in cancer, which is a combined outcome of genetic and epigenetic alterations. However, the role of epigenetic modifiers in response to NIC in breast cancer is less studied. In the present study, for the first time we have shown NIC-induced enhanced EZH2 expression.
View Article and Find Full Text PDFBackground: Well-known anti-malarial drug artemisinin exhibits potent anti-cancerous activities. In-vivo and in-vitro studies showed its anti-tumor and immunomodulatory properties signifying it as a potent drug candidate for study. The studies of mechanisms of cell movement are relevant which can be understood by knowing the involvement of genes in an effect of a drug.
View Article and Find Full Text PDFForkhead box protein A1 (FOXA1) is essential for the growth and differentiation of breast epithelium, and has a favorable outcome in breast cancer (BC). Elevated expression in BC also facilitates hormone responsiveness in estrogen receptor ()-positive BC. However, the interaction between these two pathways is not fully understood.
View Article and Find Full Text PDFCytosolic inorganic pyrophosphatase plays an important role in the cellular metabolism by hydrolyzing inorganic pyrophosphate (PPi) formed as a by-product of various metabolic reactions. Inorganic pyrophosphatases are known to be associated with important functions related to the growth and development of various organisms. In humans, the expression of inorganic pyrophosphatase (PPA1) is deregulated in different types of cancer and is involved in the migration and invasion of gastric cancer cells and proliferation of ovarian cancer cells.
View Article and Find Full Text PDFThe progesterone receptor (PgR), a sex steroid hormone receptor that binds progesterone is critical for normal breast development. The PgR (+331G/A, rs10895068) promoter polymorphism is associated with cancer risk possibly by altering the expression of progesterone receptor B isoform. Previous studies have provided inconsistent results.
View Article and Find Full Text PDFBackground: Thyroid hormones regulate cell proliferation, differentiation as well as apoptosis. However molecular mechanism underlying apoptosis as a result of thyroid hormone signaling is poorly understood. The antiapoptotic role of Senescence Marker Protein-30 (SMP30) has been characterized in response to varieties of stimuli as well as in knock out model.
View Article and Find Full Text PDFThe third International Translational Cancer Research symposium on "Cell Signaling and Cancer" was recently (from Dec. 18th through Dec. 21st, 2009) convened in Bhubaneswar, Orissa, which lies along the eastern shores of India, just south of Bengal.
View Article and Find Full Text PDFUnderstanding the mechanism underlying p53's ability to induce cell cycle arrest versus apoptosis is critical to treating human gliomas, 70% of which contain wild-type p53. Although N-terminal phosphorylation results in activation of p53, the role of N-terminal phosphorylation, particularly at serines 15 and 20, in p53's ability to induce cell cycle arrest versus apoptosis remains controversial. Here we test the hypothesis that phosphorylation of serine 15 and/or 20 is causally related to p53-mediated apoptosis in human gliomas.
View Article and Find Full Text PDFThe estrogen receptor plays an important role in breast cancer progression. Proline-, glutamic acid-, and leucine-rich protein 1 (PELP1), also called modulator of nongenomic activity of estrogen receptor (MNAR), a novel coactivator of estrogen receptor, modulates estrogen receptor transactivation functions. The mechanisms by which PELP1 modulates estrogen receptor genomic functions is not known.
View Article and Find Full Text PDF