Publications by authors named "Sandip Bharate"

The phosphoinositide kinase, PIKfyve is a lipid kinase that plays a vital role in membrane trafficking, endosomal transport, retroviral budding, and toll-like receptor signaling. Thus, it has emerged as a potential therapeutic target for several diseases, including, cancer, viral infections, and autoimmune diseases. However, a limited number of PIKfyve inhibitors have been reported so far.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a complex neurodegenerative disorder having limited treatment options. The beta-site APP cleaving enzyme 1 (BACE-1) is a key target for therapeutic intervention in Alzheimer's disease. To discover new scaffolds for BACE-1 inhibitors, a ChemBridge DIVERSet library of 20,000 small molecules was employed to structure-based virtual screening.

View Article and Find Full Text PDF

Aging is usually accompanied by mitochondrial dysfunction, reduced energy levels, and cell death in the brain and other tissues. Mitochondria play a crucial role in maintaining cellular energy through oxidative phosphorylation (OXPHOS). However, OXPHOS is impaired as the mitochondrial oxygen supply decreases with age.

View Article and Find Full Text PDF

Alzheimer's disease (AD) manifests as a progressive decline in cognitive function and mental behavior. Targeting two crucial enzymes associated with AD, acetylcholinesterase (AChE) and BACE 1 (Beta-site APP Cleaving Enzyme), in combination, holds promise for therapeutic breakthroughs. In this study, 40 derivatives of pyrrol-2-yl-phenyl allylidene hydrazine carboximidamide were designed based on prior research.

View Article and Find Full Text PDF

Considering the failure of many enzyme inhibitors for Alzheimer's disease (AD), research is now focused on multi-target directed drug discovery. In this paper, inhibition of two essential enzymes implicated in AD pathologies, acetylcholinesterase (AChE) and BACE 1 (Beta-site APP Cleaving Enzyme), has been explored. Taking clues from our previous work, 41 novel indol-3-yl phenyl allylidene hydrazine carboximidamide derivatives were synthesized.

View Article and Find Full Text PDF

Colchicine, one of the oldest anti-inflammatory natural products still used clinically, inhibits NF-κB signaling and NLRP3 inflammasome activation. Despite its cytotoxicity and narrow therapeutic range, colchicine continues to intrigue medicinal chemists exploring its anti-inflammatory potential. This study aimed to investigate the colchicine scaffold for its role in Alzheimer's disease by targeting neuroinflammation and cholinesterases.

View Article and Find Full Text PDF
Article Synopsis
  • - The N-benzyl piperidine (N-BP) motif is an important structural element in drug discovery, known for its flexibility and ability to interact with target proteins.
  • - Medicinal chemists leverage the N-BP motif to enhance drug efficacy and optimize properties related to potency and toxicity, identifying its relevance in existing and emerging therapies.
  • - The review highlights the N-BP motif's applications in drug development, including its presence in approved drugs and ongoing clinical trials, while also addressing potential challenges in its use for various therapeutic targets.
View Article and Find Full Text PDF

Natural products have always served as an important source of drugs for treating various diseases. Among various privileged natural product scaffolds, the benzopyrone class of compounds has a substantial presence among biologically active compounds. One of the pioneering anticoagulant drugs, warfarin approved in 1954 bears a benzo-α-pyrone (coumarin) nucleus.

View Article and Find Full Text PDF

Heterocyclic compounds play a crucial role in the discovery of therapeutics. Alzheimer's disease (AD) is an unfathomable sporadic neurodegenerative disorder that involves multiple pathological pathways. The failure of current single-target small molecules to address AD's underlying causes has prompted interest in discovering multi-target directed ligands (MTDLs) to slow down the disease's progression.

View Article and Find Full Text PDF

Caffeine is one of the privileged natural products that shows numerous effects on the central nervous system. Herein, thirty-one caffeine-based amide derivatives were synthesized and evaluated in vitro for their anticholinesterase activity. The introduction of the amide group to the caffeine core augmented its anticholinesterase activity from an IC value of 128 to 1.

View Article and Find Full Text PDF

The chromone alkaloid is one of the classical pharmacophores for cyclin-dependent kinases (CDKs) and represents the first CDK inhibitor to reach clinical trials. Rohitukine (1), a chromone alkaloid isolated from Dysoxylum binectariferum inspired the discovery of several clinical candidates. The N-oxide derivative of rohitukine occurs naturally, with no reports on its biological activity.

View Article and Find Full Text PDF

The multifaceted nature of Alzheimer's disease (AD) indicates the need for multitargeted agents as potential therapeutics. Both cholinesterases (ChEs), acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), play a vital role in disease progression. Thus, inhibiting both ChEs is more beneficial than only one for effectively managing AD.

View Article and Find Full Text PDF

Coumarin is a naturally occurring bioactive pharmacophore with wide occurrence among central nervous system (CNS)-active small molecules. 8-Acetylcoumarin, one of the natural coumarins, is a mild inhibitor of cholinesterases and β-secretase, which are vital targets of Alzheimer's disease. Herein, we synthesized a series of coumarin-triazole hybrids as potential multitargeted drug ligands (MTDLs) with better activity profiles.

View Article and Find Full Text PDF

The complex and multifaceted nature of Alzheimer's disease has brought about a pressing demand to develop ligands targeting multiple pathways to combat its outrageous prevalence. Embelin is a major secondary metabolite of Burm f., one of the oldest herbs in Indian traditional medicine.

View Article and Find Full Text PDF

Natural products have been a great source of leads for cancer drug discovery. The cyclin-dependent kinases (CDKs) play a vital role in the initiation and progression of cancer. The CDK-activating kinase, CDK7/cyclin H/MAT1, has recently gained tremendous attention in targeted cancer drug discovery.

View Article and Find Full Text PDF

Berberrubine is a naturally occurring isoquinoline alkaloid and a bioactive metabolite of berberine. Berberine exhibits a wide range of pharmacological activities, including cholinesterase inhibition. The cholinesterase inhibitors provide symptomatic treatment for Alzheimer's disease; however, multitarget-directed ligands have the potential as disease-modifying therapeutics.

View Article and Find Full Text PDF

Rumex abyssinicus Jacq. is a perennial medicinal herb widely used in traditional medicine to treat many diseases. Phytochemicals of the plant were isolated using column chromatography and thin layer chromatography techniques.

View Article and Find Full Text PDF

Objective: The current study evaluated various new colchicine analogs for their anticancer activity and to study the primary mechanism of apoptosis and in vivo antitumor activity of the analogs with selective anticancer properties and minimal toxicity to normal cells.

Methods: Sulforhodamine B (SRB) assay was used to screen various colchicine analogs for their in vitro cytotoxicity. The effect of N-[(7S)-1,2,3-trimethoxy-9-oxo-10-(pyrrolidine-1-yl)5,6,7,9-tetrahydrobenzo[a] heptalene-7-yl] acetamide (IIIM-067) on clonogenicity, apoptotic induction, and invasiveness of A549 cells was determined using a clonogenic assay, scratch assay, and staining with 4',6-diamidino-2-phenylindole (DAPI) and annexin V/propidium iodide.

View Article and Find Full Text PDF

Natural products have significantly contributed to drug discovery for neurodegenerative diseases. Caffeine is one of the well-known central nervous system(CNS)-active natural products. Besides its CNS stimulant properties, it is a mild inhibitor of acetylcholinesterase (AChE) and possesses memory-enhancing properties.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a multifaceted neurodegenerative disorder involving various pathological events. The existing options for managing the disease utterly rely on cholinesterase (ChE) inhibitors. In recent years, the dual inhibition of ChEs as a potential AD therapeutics has substantially attracted the attention of medicinal chemists.

View Article and Find Full Text PDF
Article Synopsis
  • Melanoma is a severe cancer with low survival rates and few treatment options; this study explores the effectiveness of 3-O-prenyl glycyrrhetinic acid (NPC-402) derived from a medicinal plant against aggressive melanoma cells.
  • NPC-402 was shown to induce cell death through mechanisms involving oxidative stress, apoptosis, and autophagy, which were linked to endoplasmic reticulum stress and specific signaling pathways.
  • In mouse models, NPC-402 significantly reduced tumor growth and angiogenesis without major toxicity, suggesting it may be a promising candidate for melanoma treatment.
View Article and Find Full Text PDF

Plants have immensely contributed to the drug discovery for neurodegenerative diseases. Herein, we undertook the phytochemical investigation of Nardostachys jatamansi (D.Don) DC.

View Article and Find Full Text PDF
Article Synopsis
  • The aryl hydrocarbon receptor (AHR) plays a crucial role in sensing environmental factors, influencing the gut's health and protection against diseases like colitis and colorectal cancer.
  • AHR is essential for stopping the regeneration process of intestinal cells after injury, ensuring that cells regain their proper mature identity.
  • Research shows that AHR regulates key transcription factors and controls genetic accessibility, emphasizing its role in maintaining a balance between tissue regeneration and preventing cancer transformation.
View Article and Find Full Text PDF