Publications by authors named "Sandip Bains"

The nuclear factor erythroid derived 2-related factor 2 (Nrf2) and the antioxidant protein heme oxygenase-1 (HO-1) are crucial components of the cellular stress response. These two systems work together to combat oxidative stress and inflammation and are attractive drug targets for counteracting different pathologies, including neuroinflammation. We aimed to identify the most effective Nrf2/HO-1 activators that modulate the inflammatory response in microglia cells.

View Article and Find Full Text PDF

Mitochondria-directed antioxidants 2-5 were designed by conjugating curcumin congeners with different polyamine motifs as vehicle tools. The conjugates emerged as efficient antioxidants in mitochondria and fibroblasts and also exerted a protecting role through heme oxygenase-1 activation. Notably, the insertion of a polyamine function into the curcumin-like moiety allowed an efficient intracellular uptake and mitochondria targeting.

View Article and Find Full Text PDF

Objective: Sickle cell disease (SCD) is characterized by extensive hemolysis, increased cellular adhesion, and vaso-occlusion. Tissues from sickle patients express heme oxygenase-1 (HO-1), the enzyme that degrades free heme/hemoglobin to the signaling molecule carbon monoxide, and the antioxidants biliverdin/bilirubin. Here, we examined the HO response in endothelial cells exposed to human sickle blood and determined whether this response is beneficial for SCD.

View Article and Find Full Text PDF

Heme is a strong inducer and substrate of the stress protein heme oxygenase-1 (HO-1), which produces carbon monoxide, iron, and bilirubin. We have reported recently that nitric oxide (NO) augments the incorporation of free hemin in endothelial cells, resulting in amplified HO-1 expression and production of bilirubin. Here, we extend our studies by showing that both NO+ and NO- donors interacted with reduced (HbA0) or oxidized (metHb) hemoglobin, as well as hemoglobin from sickle cell disease (HbS), to strongly magnify HO-1, with a pattern of induction dependent on the oxidation state of the hemoglobin used.

View Article and Find Full Text PDF

Carbon monoxide (CO) is emerging as an important and versatile mediator of physiological processes to the extent that treatment of animals with exogenous CO gas has beneficial effects in a range of vascular- and inflammatory-related disease models. The recent discovery that certain transition metal carbonyls function as CO-releasing molecules (CO-RMs) in biological systems highlighted the potential of exploiting this and similar classes of compounds as a stratagem to deliver CO for therapeutic purposes. Here we describe the biochemical features and pharmacological actions of a newly identified water-soluble CO releaser (CORM-A1) that, unlike the first prototypic molecule recently described (CORM-3), does not contain a transition metal and liberates CO at a much slower rate under physiological conditions.

View Article and Find Full Text PDF

NO potently up-regulates vascular haem oxygenase-1 (HO-1), an inducible defensive protein that degrades haem to CO, iron and the antioxidant bilirubin. Since several pathological states are characterized by increased NO production and liberation of haem from haem-containing proteins, we examined how NO influences HO-1 induction mediated by haemin. Aortic endothelial cells treated with S-nitroso-N-acetylpenicillamine (SNAP), sodium nitroprusside (SNP) or diethylenetriamine-NONOate (DETA/NO) and haemin exhibited higher levels of haem oxygenase activity compared with cells exposed to NO donors or haemin alone.

View Article and Find Full Text PDF

Nitric oxide and S-nitrosothiols modulate a variety of important physiological activities. In vascular cells, agents that release NO and donate nitrosonium cation (NO(+)), such as S-nitrosoglutathione, are potent inducers of the antioxidant protein heme oxygenase 1 (HO-1) (Foresti, R., Clark, J.

View Article and Find Full Text PDF