Publications by authors named "Sandii Constable"

Brain neurons utilize the primary cilium as a privileged compartment to detect and respond to extracellular ligands such as Sonic hedgehog (SHH). However, cilia in cerebellar granule cell (GC) neurons disassemble during differentiation through ultrastructurally unique intermediates, a process we refer to as cilia deconstruction. In addition, mature neurons do not reciliate despite having docked centrioles.

View Article and Find Full Text PDF

Primary cilia on granule cell neuron progenitors in the developing cerebellum detect sonic hedgehog to facilitate proliferation. Following differentiation, cerebellar granule cells become the most abundant neuronal cell type in the brain. While granule cell cilia are essential during early developmental stages, they become infrequent upon maturation.

View Article and Find Full Text PDF

Primary cilia on granule cell neuron progenitors in the developing cerebellum detect sonic hedgehog to facilitate proliferation. Following differentiation, cerebellar granule cells become the most abundant neuronal cell type in the brain. While essential during early developmental stages, the fate of granule cell cilia is unknown.

View Article and Find Full Text PDF

The identity of ventral neural progenitors in the neural tube is largely dependent on Hedgehog (Hh) signaling. Variations in staining patterns are excellent indicators of aberrant Hh signaling. Here we describe the basic protocol to stain for progenitor populations based on transcription factor expression.

View Article and Find Full Text PDF

Oligogenic inheritance makes the etiology of developmental diseases challenging to determine. In this issue of Developmental Cell, Kong et al., 2020 identify members of a membrane-tethered ubiquitin complex that attenuates Hedgehog signaling strength and genetically interact to regulate digit number, body patterning, and cardiac development.

View Article and Find Full Text PDF

Sonic hedgehog (Shh) signal transduction specifies ventral cell fates in the neural tube and is mediated by the Gli transcription factors that play both activator (GliA) and repressor (GliR) roles. Cilia are essential for Shh signal transduction and the ciliary phosphatidylinositol phosphatase Inpp5e is linked to Shh regulation. In the course of a forward genetic screen for recessive mouse mutants, we identified a functional null allele of inositol polyphosphate-5-phosphatase E (), (), with expanded ventral neural cell fates at E10.

View Article and Find Full Text PDF

Appropriate axonal growth and connectivity are essential for functional wiring of the brain. Joubert syndrome-related disorders (JSRD), a group of ciliopathies in which mutations disrupt primary cilia function, are characterized by axonal tract malformations. However, little is known about how cilia-driven signaling regulates axonal growth and connectivity.

View Article and Find Full Text PDF

The small GTPase Arl13b is enriched in primary cilia and regulates Sonic hedgehog (Shh) signaling. During neural development, Shh controls patterning and proliferation through a canonical, transcription-dependent pathway that requires the primary cilium. Additionally, Shh controls axon guidance through a non-canonical, transcription-independent pathway whose connection to the primary cilium is unknown.

View Article and Find Full Text PDF

O-linked β-N-acetylglucosamine (O-GlcNAc) is a single sugar modification found on many different classes of nuclear and cytoplasmic proteins. Addition of this modification, by the enzyme O-linked N-acetylglucosamine transferase (OGT), is dynamic and inducible. One major class of proteins modified by O-GlcNAc is transcription factors.

View Article and Find Full Text PDF