Publications by authors named "Sandie Arnoux"

Considering human decision-making is essential for understanding the mechanisms underlying the propagation of real-life diseases. We present an extension of a model for pathogen spread that considers farmers' dynamic decision-making regarding the adoption of a control measure in their own herd. Farmers can take into account the decisions and observed costs of their trade partners or of their geographic neighbours.

View Article and Find Full Text PDF

Bovine paratuberculosis is an endemic disease caused by Mycobacterium avium subspecies paratuberculosis (Map). Map is mainly transmitted between herds through movement of infected but undetected animals. Our objective was to investigate the effect of observed herd characteristics on Map spread on a national scale in Ireland.

View Article and Find Full Text PDF

Bovine viral diarrhoea (BVD) remains an issue despite control programs implemented worldwide. Virus introduction can occur through contacts with neighbouring herds. Vaccination can locally protect exposed herds.

View Article and Find Full Text PDF
Article Synopsis
  • Spatio-temporal environments can cause unpredictable population changes, highlighting the need for understanding local aspects that support population resilience.
  • A model of tsetse fly populations, influenced by temperature and mortality rates, reveals that in cooler areas, control efforts may inadvertently allow faster recovery of populations.
  • Effective management strategies should consider the identification of refuges that may undermine control efforts and emphasize the importance of gathering baseline ecosystem data before any intervention.
View Article and Find Full Text PDF

Stochastic mechanistic epidemiological models largely contribute to better understand pathogen emergence and spread, and assess control strategies at various scales (from within-host to transnational scale). However, developing realistic models which involve multi-disciplinary knowledge integration faces three major challenges in predictive epidemiology: lack of readability once translated into simulation code, low reproducibility and reusability, and long development time compared to outbreak time scale. We introduce here EMULSION, an artificial intelligence-based software intended to address those issues and help modellers focus on model design rather than programming.

View Article and Find Full Text PDF

To explore the regional spread of endemic pathogens, investigations are required both at within and between population levels. The bovine viral diarrhoea virus (BVDV) is such a pathogen, spreading among cattle herds mainly due to trade movements and neighbourhood contacts, and causing an endemic disease with economic consequences. To assess the contribution of both transmission routes on BVDV regional and local spread, we developed an original epidemiological model combining data-driven and mechanistic approaches, accounting for heterogeneous within-herd dynamics, animal movements and neighbourhood contacts.

View Article and Find Full Text PDF

Bovine viral diarrhea virus (BVDV) is a common pathogen of cattle herds that causes economic losses due to reproductive disorders in breeding cattle and increased morbidity and mortality amongst infected calves. Our objective was to evaluate the impact of BVDV spread on the productivity of a beef cow-calf herd using a stochastic model in discrete time that accounted for (1) the difference in transmission rates when animals are housed indoors versus grazing on pasture, (2) the external risk of disease introductions through fenceline contact with neighboring herds and the purchase of infected cattle, and (3) the risk of individual pregnant cattle generating persistently infected (PI) calves based on their stage in gestation. The model predicted the highest losses from BVDV during the first 3 years after disease was introduced into a naive herd.

View Article and Find Full Text PDF

Summary: The classification of transposable elements (TEs) is key step towards deciphering their potential impact on the genome. However, this process is often based on manual sequence inspection by TE experts. With the wealth of genomic sequences now available, this task requires automation, making it accessible to most scientists.

View Article and Find Full Text PDF