In the field of muscle fatigue models (MFMs), the prior research has demonstrated success in fitting data in specific contexts, but it falls short in addressing the diverse efforts and rapid changes in exertion typical of soccer matches. This study builds upon the existing model, aiming to enhance its applicability and robustness to dynamic demand shifts. The objective is to encapsulate the complexities of soccer dynamics with a streamlined set of parameters.
View Article and Find Full Text PDFOptimizing the performance of heating, ventilation, and air-conditioning (HVAC) systems is critical in today's energy-conscious world. Fan coil units (FCUs) play a critical role in providing comfort in various environments as an important component of HVAC systems. However, FCUs often experience failures that affect their efficiency and increase their energy consumption.
View Article and Find Full Text PDFMotor imagery (MI) is a technique of imagining the performance of a motor task without actually using the muscles. When employed in a brain-computer interface (BCI) supported by electroencephalographic (EEG) sensors, it can be used as a successful method of human-computer interaction. In this paper, the performance of six different classifiers, namely linear discriminant analysis (LDA), support vector machine (SVM), random forest (RF), and three classifiers from the family of convolutional neural networks (CNN), is evaluated using EEG MI datasets.
View Article and Find Full Text PDFHeating, ventilation, and air conditioning (HVAC) systems are a popular research topic because buildings' energy is mostly used for heating and/or cooling. These systems heavily rely on sensory measurements and typically make an integral part of the smart building concept. As such, they require the implementation of fault detection and diagnosis (FDD) methodologies, which should assist users in maintaining comfort while consuming minimal energy.
View Article and Find Full Text PDFIn this paper, we investigate the possibilities for augmenting interaction around the mobile device, with the aim of enabling input techniques that do not rely on typical touch-based gestures. The presented research focuses on utilizing a built-in magnetic field sensor, whose readouts are intentionally affected by moving a strong permanent magnet around a smartphone device. Different approaches for supporting magnet-based Around-Device Interaction are applied, including magnetic field fingerprinting, curve-fitting modeling, and machine learning.
View Article and Find Full Text PDFSensors (Basel)
November 2020
Accurate, inexpensive, and reliable real-time indoor localization holds the key to the full potential of the context-aware applications and location-based Internet of Things (IoT) services. State-of-the-art indoor localization systems are coping with the complex non-line-of-sight (NLOS) signal propagation which hinders the use of proven multiangulation and multilateration methods, as well as with prohibitive installation costs, computational demands, and energy requirements. In this paper, we present a novel sensor utilizing low-range infrared (IR) signal in the line-of-sight (LOS) context providing high precision angle-of-arrival (AoA) estimation.
View Article and Find Full Text PDFData presented in this article was created using a Croatian instrument called - a traditional hand-made wooden aerophone of piercing sound, characteristic to the Istrian peninsula in western Croatia. The instrument is always played in pair (plural form: ), which consists of two voices: a and a . The data contains Waveform Audio File format (WAV) files, capturing every possible distinct tone of both , as well as their polyphonic combinations.
View Article and Find Full Text PDF