Decellularized extracellular matrix (dECM) products are widely established for soft tissue repair, reconstruction, and reinforcement. These regenerative biomaterials mimic native tissue ECM with respect to structure and biology and are produced from a range of tissue sources and species. Optimal source tissue processing requires a balance between removal of cellular material and the preservation of structural and biological properties of tissue ECM.
View Article and Find Full Text PDFBiomaterials and negative pressure wound therapy (NPWT) are treatment modalities regularly used together to accelerate soft-tissue regeneration. This study evaluated the impact of the design and composition of commercially available collagen-based matrices on the observed vacuum pressure delivered under NPWT using a custom test apparatus. Specifically, testing compared the effect of the commercial products; ovine forestomach matrix (OFM), collagen/oxidized regenerated cellulose (collagen/ORC) and a collagen-based dressing (CWD) on the observed vacuum pressure.
View Article and Find Full Text PDFDecellularized extracellular matrix (dECM)-based biomaterials are of great clinical utility in soft tissue repair applications due to their regenerative properties. Multi-layered dECM devices have been developed for clinical indications where additional thickness and biomechanical performance are required. However, traditional approaches to the fabrication of multi-layered dECM devices introduce additional laminating materials or chemical modifications of the dECM that may impair the biological functionality of the material.
View Article and Find Full Text PDFSoft tissue is composed of cells surrounded by an extracellular matrix that is made up of a diverse array of intricately organized proteins. These distinct components work in concert to maintain homeostasis and respond to tissue damage. During tissue repair, extracellular matrix proteins and their degradation products are known to influence physiological processes such as angiogenesis and inflammation.
View Article and Find Full Text PDFOvine forestomach matrix (OFM) is a decellularized extracellular matrix (dECM) biomaterial that serves as a scaffold for remodeling damaged soft tissue. dECM biomaterials are used in a variety of clinical applications, and their regenerative capacity is encoded not only in their biophysical properties but also in their molecular diversity. In this study, the proteome of OFM was characterized via both targeted and global mass spectrometry (MS) with the use of heavy isotope labeled (SIL) internal standards.
View Article and Find Full Text PDFBackground: Antimicrobial technologies, including silver-containing medical devices, are increasingly utilized in clinical regimens to mitigate risks of microbial colonization. Silver-functionalized resorbable biomaterials for use in wound management and tissue regeneration applications have a narrow therapeutic index where antimicrobial effectiveness may be outweighed by adverse cytotoxicity. We examined the effects of ionic silver functionalization of an extracellular matrix (ECM) biomaterial derived from ovine forestomach (OFM-Ag) in terms of material properties, antimicrobial effectiveness and cytotoxicity profile.
View Article and Find Full Text PDFScaffold biomaterials are typically applied surgically as reinforcement for weakened or damaged tissue, acting as substrates on which healing tissue can grow. Natural extracellular matrix (ECM) materials consisting mainly of collagen are often used for this purpose, but are anisotropic. Ovine forestomach matrix (OFM) ECM was exposed to increasing strain and synchrotron-based SAXS diffraction patterns and revealed that the collagen fibrils within underwent changes in orientation, orientation index (a measure of isotropy), and extension.
View Article and Find Full Text PDFOvine forestomach matrix (OFM) biomaterial acts as a biomimetic of native extracellular matrix (ECM) by providing structural and functional cues to orchestrate cell activity during tissue regeneration. The ordered collagen matrix of the biomaterial is supplemented with secondary ECM-associated macromolecules that function in cell adhesion, migration and communication. As angiogenesis and vasculogenesis are critical processes during tissue regeneration we sought to quantify the angiogenic properties of the OFM biomaterial.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2011
Ovine forestomach matrix (OFM) is a native and functional decellularized extracellular matrix biomaterial that supports cell adhesion and proliferation and is remodeled during the course of tissue regeneration. Small angle X-ray scattering demonstrated that OFM retains a native collagen architecture (d spacing = 63.5 ± 0.
View Article and Find Full Text PDFExtracellular matrix (ECM) based biomaterials have an established place as medical devices for wound healing and tissue regeneration. In the search for biomaterials we have identified ovine forestomach matrix (OFM), a thick, large format ECM which is biochemically diverse and biologically functional. OFM was purified using an osmotic process that was shown to reduce the cellularity of the ECM and aid tissue delamination.
View Article and Find Full Text PDF