Publications by authors named "Sandhya Sridhar"

Glycosylation is a ubiquitous modification of proteins, necessitating approaches for its visualization and characterization. Bioorthogonally tagged monosaccharides have been instrumental to this end, offering a chemical view into the cell biology of glycans. Understanding the use of such monosaccharides by cellular biosynthetic pathways has expanded their applicability in cell biology, for instance through the strategy named Bio-Orthogonal Cell-specific TAgging of Glycoproteins (BOCTAG).

View Article and Find Full Text PDF

The F-box and WD repeat domain containing 7 (FBXW7) tumour suppressor gene encodes a substrate-recognition subunit of Skp, cullin, F-box (SCF)-containing complexes. The tumour-suppressive role of FBXW7 is ascribed to its ability to drive ubiquitination and degradation of oncoproteins. Despite this molecular understanding, therapeutic approaches that target defective FBXW7 have not been identified.

View Article and Find Full Text PDF

The PSMC3IP-MND1 heterodimer promotes meiotic D loop formation before DNA strand exchange. In genome-scale CRISPR-Cas9 mutagenesis and interference screens in mitotic cells, depletion of PSMC3IP or MND1 causes sensitivity to poly (ADP-Ribose) polymerase inhibitors (PARPi) used in cancer treatment. PSMC3IP or MND1 depletion also causes ionizing radiation sensitivity.

View Article and Find Full Text PDF

To identify approaches to target DNA repair vulnerabilities in cancer, we discovered nanomolar potent, selective, low molecular weight (MW), allosteric inhibitors of the polymerase function of DNA polymerase Polθ, including ART558. ART558 inhibits the major Polθ-mediated DNA repair process, Theta-Mediated End Joining, without targeting Non-Homologous End Joining. In addition, ART558 elicits DNA damage and synthetic lethality in BRCA1- or BRCA2-mutant tumour cells and enhances the effects of a PARP inhibitor.

View Article and Find Full Text PDF