Publications by authors named "Sandhya S Thomas"

High-protein diets (HPDs) offer health benefits, such as weight management and improved metabolic profiles. The effects of HPD on cardiac arrhythmogenesis remain unclear. Atrial fibrillation (AF), the most common arrhythmia, is associated with inflammasome activation.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is often associated with protein-energy wasting (PEW), which is characterized by a reduction in muscle mass and strength. Although mitochondrial dysfunction and oxidative stress have been implicated to play a role in the pathogenesis of muscle wasting, the underlying mechanisms remain unclear. In this study, we used transcriptomics, metabolomics analyses and mouse gene manipulating approaches to investigate the effects of mitochondrial plasticity and oxidative stress on muscle wasting in mouse CKD models.

View Article and Find Full Text PDF

A comprehensive atlas of cis-regulatory elements and their dynamic activity is necessary to understand the transcriptional basis of cellular structure maintenance, metabolism, and responses to the environment. Here we show, using matched single-nucleus chromatin accessibility and RNA-sequencing from juvenile male C57BL6 mice, an atlas of accessible chromatin regions in both normal and denervated skeletal muscles. We identified cell-type-specific cis-regulatory networks, highlighting the dynamic regulatory circuits mediating transitions between myonuclear types.

View Article and Find Full Text PDF

Insulin regulates energy metabolism involving multiple organ systems. Insulin resistance (IR) occurs when organs exhibit reduced insulin sensitivity, leading to difficulties in maintaining glucose homeostasis. IR ensures decades prior to development of overt diabetes and can cause silent metabolic derangements.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is associated with a higher risk of atrial fibrillation (AF). The mechanistic link between CKD and AF remains elusive. IL-1β, a main effector of NLR family pyrin domain-containing 3 (NLRP3) inflammasome activation, is a key modulator of conditions associated with inflammation, such as AF and CKD.

View Article and Find Full Text PDF

Purpose Of Review: Diabetic kidney disease is the most common cause of chronic kidney disease (CKD) and end-stage kidney disease in the world. Risk factor modification, glucose control, and renin-angiotensin-aldosterone system blockade have remained the standard of care for 2 decades. New therapeutic agents have emerged in recent years, demonstrating kidney and cardiovascular benefits, and herein we review recent clinical trials on this topic.

View Article and Find Full Text PDF

Background: Skeletal muscle exhibits remarkable plasticity under both physiological and pathological conditions. One major manifestation of this plasticity is muscle atrophy that is an adaptive response to catabolic stimuli. Because the heterogeneous transcriptome responses to catabolism in different types of muscle cells are not fully characterized, we applied single-nucleus RNA sequencing (snRNA-seq) to unveil muscle atrophy related transcriptional changes at single nucleus resolution.

View Article and Find Full Text PDF

Background: Chronic kidney disease (CKD) is characterized by increased myocardial mass despite near-normal blood pressure, suggesting the presence of a separate trigger. A potential driver is SIRPα (signal regulatory protein alpha)-a mediator impairing insulin signaling. The objective of this study is to assess the role of circulating SIRPα in CKD-induced adverse cardiac remodeling.

View Article and Find Full Text PDF

Background: Muscle wasting from chronic kidney disease (CKD) or from defective insulin signalling results in morbidity and, ultimately, mortality. We have identified an endogenous mediator of insulin resistance, signal regulatory protein alpha (SIRPα), which leads to cachexia in mice and is associated with cachexia in patients with CKD.

Methods: We assessed insulin signalling and mechanisms causing muscle atrophy plus white adipose tissue (WAT) metabolism in mouse models of CKD or acute diabetes (streptozotocin treatment).

View Article and Find Full Text PDF

Background: Chronic kidney disease (CKD) is commonly associated with cachexia, a condition that causes skeletal muscle wasting and an unfavourable prognosis. Although mechanisms leading to cachexia have been intensively studied, the advance of biological knowledges and technologies encourages us to make progress in understanding the pathogenesis of this disorder. Long noncoding RNAs (lncRNAs) are defined as >200 nucleotides RNAs but lack the protein-coding potential.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) and related inflammatory responses stimulate protein-energy wasting, a complication causing loss of muscle mass. Primarily, muscle wasting results from accelerated protein degradation via autophagic/lysosomal and proteasomal pathways, but mechanisms regulating these proteolysis pathways remain unclear. Since dephosphorylation of FoxOs regulates ubiquitin/proteasome protein metabolism, we tested whether a novel nuclear phosphatase, the small C-terminal domain phosphatase (SCP) 4, regulates FoxOs signaling and, in turn, muscle wasting.

View Article and Find Full Text PDF

Purpose Of Review: Studying organ-to-organ communications (i.e. crosstalk) uncovers mechanisms regulating metabolism in several tissues.

View Article and Find Full Text PDF

Background: Muscle wasting in chronic kidney disease (CKD) and other catabolic disorders contributes to morbidity and mortality, and there are no therapeutic interventions that regularly and safely block losses of muscle mass. We have obtained evidence that impaired IGF-1/insulin signalling and increases in glucocorticoids, myostatin and/or inflammatory cytokines that contribute to the development of muscle wasting in catabolic disorders by activating protein degradation.

Methods: Using in vitro and in vivo models of muscle wasting associated with CKD or dexamethasone administration, we measured protein synthesis and degradation and examined mechanisms by which ursolic acid, derived from plants, could block the loss of muscle mass stimulated by CKD or excessive levels of dexamethasone.

View Article and Find Full Text PDF

Insulin resistance refers to reduced sensitivity of organs to insulin-initiated biologic processes that result in metabolic defects. Insulin resistance is common in patients with end-stage renal disease but also occurs in patients with chronic kidney disease (CKD), even when the serum creatinine is minimally increased. Following insulin binding to its receptor, auto-phosphorylation of the insulin receptor is followed by kinase reactions that phosphorylate insulin receptor substrate-1 (IRS-1), phosphatidylinositol 3-kinase (PI3K), and Akt.

View Article and Find Full Text PDF

In catabolic conditions such as aging and diabetes, IGF signaling is impaired and fibrosis develops in skeletal muscles. To examine whether impaired IGF signaling initiates muscle fibrosis, we generated IGF-IR(+/-) heterozygous mice by crossing loxP-floxed IGF-IR (exon 3) mice with MyoD-cre mice. IGF-IR(+/-) mice were studied because we were unable to obtain homozygous IGF-IR-KO mice.

View Article and Find Full Text PDF

Insulin resistance from chronic kidney disease (CKD) stimulates muscle protein wasting but mechanisms causing this resistance are controversial. To help resolve this, we used microarray analyses to identify initiators of insulin resistance in the muscles of mice with CKD, glucose intolerance, and insulin resistance. CKD raised mRNAs of inflammatory cytokines in muscles and there was a 5.

View Article and Find Full Text PDF

Catabolic conditions including chronic kidney disease (CKD), cancer, and diabetes cause muscle atrophy. The loss of muscle mass worsens the burden of disease because it is associated with increased morbidity and mortality. To avoid these problems or to develop treatment strategies, the mechanisms leading to muscle wasting must be identified.

View Article and Find Full Text PDF