Publications by authors named "Sandhya R Goudu"

Medical microrobotics is an emerging field that aims at non-invasive diagnosis and therapy inside the human body through miniaturized sensors and actuators. Such microrobots can be tethered (e.g.

View Article and Find Full Text PDF

Soft untethered micromachines with overall sizes less than 100 μm enable diverse programmed shape transformations and functions for future biomedical and organ-on-a-chip applications. However, fabrication of such machines has been hampered by the lack of control of microactuator's programmability. To address such challenge, we use two-photon polymerization to selectively link Janus microparticle-based magnetic microactuators by three-dimensional (3D) printing of soft or rigid polymer microstructures or links.

View Article and Find Full Text PDF

Manipulating and separating single label-free cells without biomarker conjugation have attracted significant interest in the field of single-cell research, but digital circuitry control and multiplexed individual storage of single label-free cells remain a challenge. Herein, by analogy with the electrical circuitry elements and electronical holes, we develop a pseudo-diamagnetophoresis (PsD) mattertronic approach in the presence of biocompatible ferrofluids for programmable manipulation and local storage of single PsD holes and label-free cells. The PsD holes conduct along linear negative micro-magnetic patterns.

View Article and Find Full Text PDF

A novel method based on remotely controlled magnetic forces of bio-functionalized superparamagnetic colloids using micromagnet arrays was devised to measure frictional force at the sub-picoNewton (pN) scale for bio-nano-/micro-electromechanical system (bio-NEMS/MEMS) interfaces in liquid. The circumferential motion of the colloids with phase-locked angles around the periphery of the micromagnets under an in-plane rotating magnetic field was governed by a balance between tangential magnetic force and drag force, which consists of viscous and frictional forces. A model correlating the phase-locked angles of the steady colloid rotation was formulated and validated by measuring the angles under controlled magnetic forces.

View Article and Find Full Text PDF