EPA Method 1615 measures enteroviruses and noroviruses present in environmental and drinking waters. This method was developed with the goal of having a standardized method for use in multiple analytical laboratories during monitoring period 3 of the Unregulated Contaminant Monitoring Rule. Herein we present the protocol for extraction of viral ribonucleic acid (RNA) from water sample concentrates and for quantitatively measuring enterovirus and norovirus concentrations using reverse transcription-quantitative PCR (RT-qPCR).
View Article and Find Full Text PDFEPA Method 1615 was developed with a goal of providing a standard method for measuring enteroviruses and noroviruses in environmental and drinking waters. The standardized sampling component of the method concentrates viruses that may be present in water by passage of a minimum specified volume of water through an electropositive cartridge filter. The minimum specified volumes for surface and finished/ground water are 300 L and 1,500 L, respectively.
View Article and Find Full Text PDFPresently there is no established cell line or small animal model that allows for the detection of infectious human norovirus. Current methods based on RT-PCR and RT-qPCR detect both infectious and non-infectious virus and thus the conclusions that may be drawn regarding the public health significance of positive findings are limited. In this study, PMA RT-PCR and RT-qPCR assays were evaluated for selective detection of infectious poliovirus, murine norovirus (MNV-1), and Norwalk virus.
View Article and Find Full Text PDFThe U.S. EPA developed a sample concentration and preparation assay in conjunction with the total culturable virus assay for concentrating and measuring culturable viruses in source and drinking waters as part of the Information Collection Rule (ICR) promulgated in 1996.
View Article and Find Full Text PDFHuman enteric viruses can be present in untreated and inadequately treated drinking water. Molecular methods, such as the reverse transcriptase PCR (RT-PCR), can detect viral genomes in a few hours, but they cannot distinguish between infectious and noninfectious viruses. Since only infectious viruses are a public health concern, methods that not only are rapid but also provide information on the infectivity of viruses are of interest.
View Article and Find Full Text PDFEnteric viruses often contaminate water sources causing frequent outbreaks of gastroenteritis. Reverse transcription-polymerase chain reaction (RT-PCR) assays are commonly used for detection of human enteric viruses in environmental and drinking water samples. RT-PCR provides a means to rapidly detect low levels of these viruses, but it is sensitive to inhibitors that are present in water samples.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2003
The Wyoming Department of Health investigated an outbreak of acute gastroenteritis among persons who dined at a tourist saloon in central Wyoming during October 2001. Human caliciviruses (HuCVs) were suspected as the etiological agent of the outbreak based on the incubation period, duration of illness, and symptoms observed in ill patrons. A retrospective cohort study demonstrated that ill patrons were 4.
View Article and Find Full Text PDF