Publications by authors named "Sandhya Amol Marathe"

Background: Salmonella, a foodborne pathogen, possesses a type I-E clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated (Cas) system. We investigated the system's role in regulating Salmonella virulence by deleting the CRISPR arrays and Cas operon.

Results: Our study demonstrates invasion and proliferation defects of CRISPR-Cas knockout strains in intestinal epithelial cells and macrophages owing to the repression of invasion and virulence genes.

View Article and Find Full Text PDF

Understanding the dynamic evolution of Salmonella is vital for effective bacterial infection management. This study explores the role of the flexible genome, organised in regions of genomic plasticity (RGP), in shaping the pathogenicity of Salmonella lineages. Through comprehensive genomic analysis of 12,244 Salmonella spp.

View Article and Find Full Text PDF

Despite the relevance of E. cloacae as an opportunistic pathogen, very little is known about its pathogenicity mechanism and the factors influencing its virulence. The mechanism of E.

View Article and Find Full Text PDF

The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated (Cas) system is a bacterial and archaeal adaptive immune system undergoing rapid multifaceted evolution. This evolution plausibly occurs due to the genetic exchanges of complete loci or individual entities. Here, we systematically investigate the evolutionary framework of the CRISPR-Cas system in six Enterobacteriaceae species and its evolutionary association with housekeeping genes as determined by the gyrB phenogram.

View Article and Find Full Text PDF

Sorafenib tosylate (SFNT) is the first-line drug for hepatocellular carcinoma. It exhibits poor solubility leading to low oral bioavailability subsequently requiring intake of large quantities of drug to exhibit desired efficacy. The present investigation was aimed at enhancing the solubility and dissolution rate of SFNT using complexation method.

View Article and Find Full Text PDF

The CRISPR-Cas mediated regulation of biofilm by Salmonella enterica serovar Typhimurium was investigated by deleting CRISPR-Cas components , , , and We determined that the system positively regulates surface biofilm while inhibiting pellicle biofilm formation. Results of real-time PCR suggest that the flagellar (, ) and curli () genes were repressed in knockout strains, causing reduced surface biofilm. The mutants displayed altered pellicle biofilm architecture.

View Article and Find Full Text PDF

Insulin resistance (IR) and accumulation of amyloid beta (Aβ) oligomers are potential causative factor for Alzheimer's Disease (AD). Simultaneously, enhanced clearance level of these oligomers through autophagy activation bring novel insights into their therapeutic paradigm. Autophagy activation is negatively correlated with mammalian target of rapamycin (mTOR) and dysregulated mTOR level due to epigenetic alterations can further culminate towards AD pathogenesis.

View Article and Find Full Text PDF

Several facets of the host immune response to Salmonella infection have been studied independently at great depths to understand the progress and pathogenesis of Salmonella infection. The circumstances under which a Salmonella-infected individual succumbs to an active disease, evolves as a persister or clears the infection are not understood in detail. We have adopted a system-level approach to develop a continuous-time mechanistic model.

View Article and Find Full Text PDF

Salmonellae display intricate evolutionary patterns comprising over 2500 serovars having diverse pathogenic profiles. The acquisition and/or exchange of various virulence factors influences the evolutionary framework. To gain insights into evolution of Salmonella in association with the CRISPR-Cas genes we performed phylogenetic surveillance across strains of 22 Salmonella serovars.

View Article and Find Full Text PDF

Enterobacter cloacae, an opportunistic nosocomial pathogen, is reported to possess different virulence factors that could potentially influence its pathogenesis. Generally, the E. cloacae infections are of endogenous origin occurring in immunocompromised patients.

View Article and Find Full Text PDF

Unlabelled: One of the important virulence properties of the pathogen is its ability to travel to a favorable environment, cross the viscous mucus barrier (intestinal barrier for enteric pathogens), and reach the epithelia to initiate pathogenesis with the help of an appendage, like flagella. Nonetheless, flagella can act as an "Achilles heel," revealing the pathogen's presence to the host through the stimulation of innate and adaptive immune responses. We assessed whether curcumin, a dietary polyphenol, could alter the motility of Salmonella, a foodborne pathogen.

View Article and Find Full Text PDF

During the breeding season male, but not female, individuals of the purple sunbird possess colourful plumage of chiefly blue and black coloration with a splatter of orange and yellow on the chest. Representative feathers of these colours were collected from male birds during the breeding season and analyzed by reflectance and scanning electron microscopy. The rachis, which is the central support of a feather on which various barbs and barbules are arranged, is spongy and made up of keratin layers with rod-shaped melanosomes sparsely distributed within these layers.

View Article and Find Full Text PDF

Importance Of The Field: Antibiotic resistance in bacterial pathogens has increased worldwide leading to treatment failures. Concerns have been raised about the use of biocides as a contributing factor to the risk of antimicrobial resistance (AMR) development. In vitro studies demonstrating increase in resistance have often been cited as evidence for increased risks.

View Article and Find Full Text PDF

The tug of war between a pathogen and its host has been one of the most amazing stories in the field of microbial pathogenesis for ages. The strongest known species of all living organisms is the Homo sapiens and yet it is incredible how a pathogen of the size of few microns is smart enough to defeat this mightiest group of survivors. It is of utmost interest to understand the mechanisms behind the successful habitation of a pathogen inside the ever-resisting and complicate human body.

View Article and Find Full Text PDF