In this work, we present a microsystem setup for performing sensitive biological membrane translocation measurements. Thin free-standing synthetic bilayer lipid membranes (BLM) were constructed in microfabricated silicon nitride apertures (<100 µm in diameter), conformal coated with Parylene (Parylene-C or Parylene-AF4). Within these BLMs, electrophysiological measurements were conducted to monitor the behavior of different pore proteins.
View Article and Find Full Text PDFHereditary Hemorrhagic Telangiectasia type 1 (HHT1) is an autosomal dominant inherited disease characterized by arteriovenous malformations and hemorrhage. HHT1 is caused by mutations in , which encodes an ancillary receptor for Transforming Growth Factor-β/Bone Morphogenetic Protein-9 expressed in all vascular endothelial cells. Haploinsufficiency is widely accepted as the underlying mechanism for HHT1.
View Article and Find Full Text PDFThis study investigates possible effects of in utero exposure of rats to a low dose (125 mg/kg bw/day) and a high dose (750 mg/kg bw/day) of Diisononyl phthalate (DINP) during the masculinisation programming window (MPW) which is embryonic days 15.5-18.5 (e15.
View Article and Find Full Text PDFWe present a chip design allowing rapid and robust lipid bilayer (LBL) membrane formation using a Parylene coated thin silicon nitride aperture. After bilayer formation, single membrane channels can be reconstituted and characterized by electrophysiology. The ability for robust reconstitution will allow parallelization and enhanced screening of small molecule drugs acting on or permeating across the membrane channel.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
View Article and Find Full Text PDFOptimized culture conditions are essential for the investigation of biological processes. In this work, on-chip optimization of bacterial culture conditions by combining microfluidics with the Box-Behnken design response surface methodology is presented. With this methodology, the effects of several cultivation variables and their interactions were investigated enabling very fast drug susceptibility screening.
View Article and Find Full Text PDFMicrofluidic cell cultures are often used in academic research but only rarely in pharmaceutical research because of unsuitable designs, inappropriate choice of materials or incompatibility with standard equipment. In particular, microfluidic cell cultures to control the gaseous microenvironment rely on PDMS despite its disadvantages. We present a novel concept for such a cell culture device that addresses these issues and is made out of hard materials instead of PDMS.
View Article and Find Full Text PDFMicromachines (Basel)
February 2018
The connection of microfluidic devices to the outer world by tubes and wires is an underestimated issue. We present methods based on 3D printing to realize microfluidic chip holders with reliable fluidic and electric connections. The chip holders are constructed by microstereolithography, an additive manufacturing technique with sub-millimeter resolution.
View Article and Find Full Text PDFBackground: Analgesic exposure during pregnancy may affect aspects of fetal gonadal development that are targeted by endocrine disruptors.
Objectives: We investigated whether therapeutically relevant doses of acetaminophen and ibuprofen affect germ cell (GC) development in human fetal testes/ovaries using and xenograft approaches.
Methods: First-trimester human fetal testes/ovaries were cultured and exposed to acetaminophen or ibuprofen (7 d).
Lab-on-a-Chip (LoC) applications for the long-term analysis of mammalian cells are still very rare due to the lack of convenient cell cultivation devices. The difficulties are the integration of suitable supply structures, the need of expensive equipment like an incubator and sophisticated pumps as well as the choice of material. The presented device is made out of hard, but non-cytotoxic materials (silicon and glass) and contains two vertical arranged membranes out of hydrogel.
View Article and Find Full Text PDFAdministration of dibutyl phthalate (DBP) to pregnant rats causes reproductive disorders in male offspring, resulting from suppression of intratesticular testosterone, and is used as a model for human testicular dysgenesis syndrome (TDS). DBP exposure in pregnancy induces focal dysgenetic areas in fetal testes that appear between e19.5-e21.
View Article and Find Full Text PDFThe testicular dysgenesis syndrome (TDS) hypothesis, which proposes that common reproductive disorders of newborn and adult human males may have a common fetal origin, is largely untested. We tested this hypothesis using a rat model involving gestational exposure to dibutyl phthalate (DBP), which suppresses testosterone production by the fetal testis. We evaluated if induction of TDS via testosterone suppression is restricted to the "masculinization programming window" (MPW), as indicated by reduction in anogenital distance (AGD).
View Article and Find Full Text PDFAn infrared (IR) absorbance sensor has been designed, realized and tested with the aim of detecting malignant melanomas in human skin biopsies. The sensor has been designed to obtain fast measurements (80 s) of a biopsy using a small light spot (0.5 mm in diameter, typically five to 10 times smaller than the biopsy size) to investigate different biopsy areas.
View Article and Find Full Text PDFA new miniaturized sensor system with an internal optical reference for the detection of mold growth is presented. The sensor chip comprises a reaction chamber provided with a culture medium that promotes the growth of mold species from mold spores. The mold detection is performed by measuring impedance changes with integrated electrodes fabricated inside the reaction chamber.
View Article and Find Full Text PDFAnalgesics which affect prostaglandin (PG) pathways are used by most pregnant women. As germ cells (GC) undergo developmental and epigenetic changes in fetal life and are PG targets, we investigated if exposure of pregnant rats to analgesics (indomethacin or acetaminophen) affected GC development and reproductive function in resulting offspring (F1) or in the F2 generation. Exposure to either analgesic reduced F1 fetal GC number in both sexes and altered the tempo of fetal GC development sex-dependently, with delayed meiotic entry in oogonia but accelerated GC differentiation in males.
View Article and Find Full Text PDFMost common male reproductive disorders are linked to lower testosterone exposure in fetal life, although the factors responsible for suppressing fetal testosterone remain largely unknown. Protracted use of acetaminophen during pregnancy is associated with increased risk of cryptorchidism in sons, but effects on fetal testosterone production have not been demonstrated. We used a validated xenograft model to expose human fetal testes to clinically relevant doses and regimens of acetaminophen.
View Article and Find Full Text PDFThis work presents an array of microfluidic chambers for on-chip culturing of microorganisms in static and continuous shear-free operation modes. The unique design comprises an in-situ polymerized hydrogel that forms gas and reagent permeable culture wells in a glass chip. Utilizing a hydrophilic substrate increases usability by autonomous capillary priming.
View Article and Find Full Text PDFBackground: Phthalate exposure induces germ cell effects in the fetal rat testis. Although experimental models have shown that the human fetal testis is insensitive to the steroidogenic effects of phthalates, the effects on germ cells have been less explored.
Objectives: We sought to identify the effects of phthalate exposure on human fetal germ cells in a dynamic model and to establish whether the rat is an appropriate model for investigating such effects.
Background: Epigenetic reprogramming of fetal germ cells involves the genome-wide erasure and subsequent re-establishment of DNA methylation. Mouse studies indicate that DNA demethylation may be initiated at embryonic day (e) 8 and completed between e11.5 and e12.
View Article and Find Full Text PDFFetal growth plays a role in programming of adult cardiometabolic disorders, which in men, are associated with lowered testosterone levels. Fetal growth and fetal androgen exposure can also predetermine testosterone levels in men, although how is unknown, because the adult Leydig cells (ALCs) that produce testosterone do not differentiate until puberty. To explain this conundrum, we hypothesized that stem cells for ALCs must be present in the fetal testis and might be susceptible to programming by fetal androgen exposure during masculinization.
View Article and Find Full Text PDFWithin the testis the spermatogonial stem cells reside in a unique microenvironment, or 'niche', which includes the surrounding somatic cells. The regulation of the balance between self-renewal and differentiation of spermatogonial stem cells determines the lifelong supply of spermatozoa by maintaining a population of undifferentiated spermatogonial stem cells and ensuring that adequate numbers of spermatogonia undergo spermatogenesis. Mouse models have been instrumental in determining a large number of factors involved in regulating the spermatogonial stem cell self-renewal and/or differentiation.
View Article and Find Full Text PDFENDOGLIN (ENG) is a co-receptor for transforming growth factor-β (TGF-β) family members that is highly expressed in endothelial cells and has a critical function in the development of the vascular system. Mutations in Eng are associated with the vascular disease known as hereditary hemorrhagic telangiectasia type l. Using mouse embryonic stem cells we observed that angiogenic factors, including vascular endothelial growth factor (VEGF), induce vasculogenesis in embryoid bodies even when Eng deficient cells or cells depleted of Eng using shRNA are used.
View Article and Find Full Text PDFEpigenetic reprogramming of germ cells involves the genome-wide erasure and subsequent re-establishment of DNA methylation, along with reprogramming of histone modification profiles and the eventual incorporation of histone variants. These linked processes appear to be key for the establishment of the correct epigenetic regulation of this cell lineage. Mouse studies indicate that DNA demethylation may be initiated at E (embryonic day) 8 with rapid and substantial erasure occurring between E11.
View Article and Find Full Text PDFIn rodents, in utero exposure to exogenous estrogens including diethylstilboestrol (DES) results in major suppression of steroidogenesis in fetal testes. Whether similar effects occur in the human fetal testis is equivocal. Based on the results of the rodent studies, we hypothesised that exposure of human fetal testes to DES would result in a reduction in testosterone production.
View Article and Find Full Text PDFIn this study, the pre-steady state development of enzymatic bioreactions using a microfluidic mixer is presented. To follow such reactions fast mixing of reagents (enzyme and substrate) is crucial. By using a highly efficient passive micromixer based on multilaminar flow, mixing times in the low millisecond range are reached.
View Article and Find Full Text PDF