Background: Neurofilament light chain (NfL) is a biomarker for axonal damage in several neurological disorders. We studied the longitudinal changes in serum NfL in patients with Guillain-Barré syndrome (GBS) in relation to disease severity, electrophysiological subtype, treatment response, and prognosis.
Methods: We included patients with GBS who participated in a double-blind, randomised, placebo-controlled trial that evaluated the effects of a second course of intravenous immunoglobulin (IVIg) on clinical outcomes.
Objective: To combine targeted transcriptomic and proteomic data in an unsupervised hierarchical clustering method to stratify patients with childhood-onset SLE (cSLE) into similar biological phenotypes, and study the immunological cellular landscape that characterises the clusters.
Methods: Targeted whole blood gene expression and serum cytokines were determined in patients with cSLE, preselected on disease activity state (at diagnosis, Low Lupus Disease Activity State (LLDAS), flare). Unsupervised hierarchical clustering, agnostic to disease characteristics, was used to identify clusters with distinct biological phenotypes.
Background And Objective: Intravenous immunoglobulin (IVIg) at a standard dosage is the treatment of choice for Guillain-Barré syndrome. The pharmacokinetics, however, is highly variable between patients, and a rapid clearance of IVIg is associated with poor recovery. We aimed to develop a model to predict the pharmacokinetics of a standard 5-day IVIg course (0.
View Article and Find Full Text PDFObjectives: Clinical phenotyping and predicting treatment responses in SLE patients is challenging. Extensive blood transcriptional profiling has identified various gene modules that are promising for stratification of SLE patients. We aimed to translate existing transcriptomic data into simpler gene signatures suitable for daily clinical practice.
View Article and Find Full Text PDFRecently, our group reported that a small interfering RNA (siRNA) targeting coagulation factor XII (si) leads to an unexpected prothrombotic response in a mouse model where venous thrombosis follows inhibition of endogenous anticoagulants. In this study, we aimed to clarify this unexpected response by evaluating the effects of this si (here, si-A) on plasma coagulation through thrombin generation (TG). Besides a routine negative control siRNA (siNEG), we included extra siRNA controls: one siRNA similar to si except for positions 9-11 of the siRNA that are replaced with its complementary base pairs (si-A), and a second siRNA against (si-B).
View Article and Find Full Text PDF