Publications by authors named "Sander Smits"

Article Synopsis
  • Microtubule-dependent endosomal transport is essential for distributing cellular components like proteins and mRNAs, but the link between mRNAs and the endosomal surface is not fully understood.
  • The research focuses on the RNA-binding protein Rrm4 and reveals a novel form of the MademoiseLLE (MLLE) domain, characterized by a unique seven-helical bundle that enhances its binding capability.
  • The study also compares this new MLLE domain with the canonical one from poly(A)-binding protein Pab1, uncovering important structural differences that help predict and verify interactions with other proteins, including human MLLE domains like PABPC1 and UBR5, which aid mRNA attachment during transport.
View Article and Find Full Text PDF

Pdr5 is the most abundant ABC transporter in Saccharomyces cerevisiae and plays a major role in the pleiotropic drug resistance (PDR) network, which actively prevents cell entry of a large number of structurally unrelated compounds. Due to a high level of asymmetry in one of its nucleotide binding sites (NBS), Pdr5 serves as a perfect model system for asymmetric ABC transporter such as its medical relevant homologue Cdr1 from Candida albicans. In the past 30 years, this ABC transporter was intensively studied in vivo and in plasma membrane vesicles.

View Article and Find Full Text PDF

To enter epithelial cells, the obligate intracellular pathogen Chlamydia pneumoniae secretes early effector proteins, which bind to and modulate the host-cell's plasma membrane and recruit several pivotal endocytic host proteins. Here, we present the high-resolution structure of an entry-related chlamydial effector protein, SemD. Co-crystallisation of SemD with its host binding partners demonstrates that SemD co-opts the Cdc42 binding site to activate the actin cytoskeleton regulator N-WASP, making active, GTP-bound Cdc42 superfluous.

View Article and Find Full Text PDF

Toxoplasma gondii is a widely distributed apicomplexan parasite causing toxoplasmosis, a critical health issue for immunocompromised individuals and for congenitally infected foetuses. Current treatment options are limited in number and associated with severe side effects. Thus, novel anti-toxoplasma agents need to be identified and developed.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers are looking for new medicines to fight this disease, studying special compounds called chalcones that come from a plant group called flavonoids.
  • * They found that a specific type of chalcone, called bichalcone, works really well against the parasite, and one particular version of it was the most effective in their tests.
View Article and Find Full Text PDF

Type I secretion systems (T1SS) facilitate the secretion of substrates in one step across both membranes of Gram-negative bacteria. A prime example is the hemolysin T1SS which secretes the toxin HlyA. Secretion is energized by the ABC transporter HlyB, which forms a complex together with the membrane fusion protein HlyD and the outer membrane protein TolC.

View Article and Find Full Text PDF

Clinically used pan and class I HDACi cause severe side effects, whereas class IIa HDACi are less cytotoxic. Here, we present the synthesis and anticancer effects of a series of 5-(trifluoromethyl)-1,2,4-oxadiazole (TFMO)-based amides and alkoxyamides derived from the previously reported class IIa HDACi YAK540. The most active class IIa inhibitor 1a showed nanomolar inhibition of the class IIa enzymes 4, 5, 7 (IC HDAC4: 12 nM) and high selectivity (selectivity index >318 for HDAC4) over non-class IIa HDACs.

View Article and Find Full Text PDF

Guanylate-binding proteins (GBPs) are essential interferon-γ-activated large GTPases that play a crucial role in host defense against intracellular bacteria and parasites. While their protective functions rely on protein polymerization, our understanding of the structural intricacies of these multimerized states remains limited. To bridge this knowledge gap, we present dimer models for human GBP1 (hGBP1) and murine GBP2 and 7 (mGBP2 and mGBP7) using an integrative approach, incorporating the crystal structure of hGBP1's GTPase domain dimer, crosslinking mass spectrometry, small-angle X-ray scattering, protein-protein docking, and molecular dynamics simulations.

View Article and Find Full Text PDF

CBL1 is an EF hand Ca binding protein from A. thaliana that is involved in the detection of cellular Ca signals and the downstream signal transmission by interaction with the protein kinase CIPK23. So far, the structure and calcium ion binding affinities of CBL1 remain elusive.

View Article and Find Full Text PDF

Synthetic cytokine receptors can modulate cellular functions based on an artificial ligand to avoid off-target and/or unspecific effects. However, ligands that can modulate receptor activity so far have not been used clinically because of unknown toxicity and immunity against the ligands. Here, we developed a fully synthetic cytokine/cytokine receptor pair based on the antigen-binding domain of the respiratory syncytial virus-approved mAb Palivizumab as a synthetic cytokine and a set of anti-idiotype nanobodies (AIP) as synthetic receptors.

View Article and Find Full Text PDF

Polyethylene terephthalate (PET) is a commodity polymer known to globally contaminate marine and terrestrial environments. Today, around 80 bacterial and fungal PET-active enzymes (PETases) are known, originating from four bacterial and two fungal phyla. In contrast, no archaeal enzyme had been identified to degrade PET.

View Article and Find Full Text PDF

Polyethylene terephthalate (PET) is a widely used synthetic polymer and known to contaminate marine and terrestrial ecosystems. Only few PET-active microorganisms and enzymes (PETases) are currently known, and it is debated whether degradation activity for PET originates from promiscuous enzymes with broad substrate spectra that primarily act on natural polymers or other bulky substrates, or whether microorganisms evolved their genetic makeup to accepting PET as a carbon source. Here, we present a predicted diene lactone hydrolase designated PET40, which acts on a broad spectrum of substrates, including PET.

View Article and Find Full Text PDF

The plant hormone receptor ETR1 regulates many highly relevant agronomic processes. Today, significant functional and structural questions remain unanswered regarding its multi-pass transmembrane sensor domain able to bind and respond to the gaseous plant hormone ethylene at femtomolar concentrations. A significant reason for this is the lack of structural data on full-length ETR1 in a lipid environment.

View Article and Find Full Text PDF

Secretion of proteins into the extracellular space has great advantages for the production of recombinant proteins. Type 1 secretion systems (T1SS) are attractive candidates to be optimized for biotechnological applications, as they have a relatively simple architecture compared to other classes of secretion systems. A paradigm of T1SS is the hemolysin A type 1 secretion system (HlyA T1SS) from Escherichia coli harboring only three membrane proteins, which makes the plasmid-based expression of the system easy.

View Article and Find Full Text PDF

The chromatophores in are evolutionary-early-stage photosynthetic organelles. Biological processes in chromatophores depend on a combination of chromatophore and nucleus-encoded proteins. Interestingly, besides proteins carrying chromatophore-targeting signals, a large arsenal of short chromatophore-targeted proteins (sCTPs; <90 amino acids) without recognizable targeting signals were found in chromatophores.

View Article and Find Full Text PDF

The rapid emergence of microbial multi-resistance against antibiotics has led to intense search for alternatives. One of these alternatives are ribosomally synthesized and post-translationally modified peptides (RiPPs), especially lantibiotics. They are active in a low nanomolar range and their high stability is due to the presence of characteristic (methyl-) lanthionine rings, which makes them promising candidates as bacteriocides.

View Article and Find Full Text PDF

The ABC transporter hemolysin B (HlyB) is the key protein of the HlyA secretion system, a paradigm of type 1 secretion systems (T1SS). T1SS catalyze the one-step substrate transport across both membranes of Gram-negative bacteria. The HlyA T1SS is composed of the ABC transporter (HlyB), the membrane fusion protein (HlyD), and the outer membrane protein TolC.

View Article and Find Full Text PDF

is a wide-spread opportunistic human pathogen and a high-risk factor for immunodeficient people and patients with cystic fibrosis. The extracellular lipase A belongs to the virulence factors of . Prior to the secretion, the lipase undergoes folding and activation by the periplasmic foldase LipH.

View Article and Find Full Text PDF

Many proteins of the Repeats in Toxins (RTX) protein family are toxins of Gram-negative pathogens including hemolysin A (HlyA) of uropathogenic E. coli. RTX proteins are secreted via Type I secretion systems (T1SS) and adopt their native conformation in the Ca-rich extracellular environment.

View Article and Find Full Text PDF

Ectoine and its derivative hydroxyectoine are widely synthesized or imported by bacteria to fend off the detrimental effects of high osmolarity on cellular hydration and growth. Genes that are connected to a particular physiological process are often found in the same genomic context. We exploited this feature in a comprehensive bioinformatical analysis of 1103 ectoine biosynthetic gene clusters from Bacteria and Archaea through which we identified 415 ect operons that colocalize with genes encoding potential osmolyte transporters.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a malignant disease of immature myeloid cells and the most prevalent acute leukemia among adults. The oncogenic homo-tetrameric fusion protein RUNX1/ETO results from the chromosomal translocation t(8;21) and is found in AML patients. The nervy homology region 2 (NHR2) domain of ETO mediates tetramerization; this oligomerization is essential for oncogenic activity.

View Article and Find Full Text PDF

Engineering dual-function single polypeptide catalysts with two abiotic or biotic catalytic entities (or combinations of both) supporting cascade reactions is becoming an important area of enzyme engineering and catalysis. Herein we present the development of a PluriZyme, TR E , with efficient native transaminase (k : 69.49±1.

View Article and Find Full Text PDF

Spatiotemporal expression can be achieved by transport and translation of mRNAs at defined subcellular sites. An emerging mechanism mediating mRNA trafficking is microtubule-dependent co-transport on shuttling endosomes. Although progress has been made in identifying various components of the endosomal mRNA transport machinery, a mechanistic understanding of how these RNA-binding proteins are connected to endosomes is still lacking.

View Article and Find Full Text PDF

The two major efflux pump systems that are involved in multidrug resistance (MDR) are (i) ATP binding cassette (ABC) transporters and (ii) secondary transporters. While the former use binding and hydrolysis of ATP to facilitate export of cytotoxic compounds, the latter utilize electrochemical gradients to expel their substrates. Pdr5 from Saccharomyces cerevisiae is a prominent member of eukaryotic ATP binding cassette (ABC) transporters that are involved in multidrug resistance (MDR) and used as a frequently studied model system.

View Article and Find Full Text PDF

Heat shock proteins 90 (Hsp90) are promising therapeutic targets due to their involvement in stabilizing several aberrantly expressed oncoproteins. In cancerous cells, Hsp90 expression is elevated, thereby exerting antiapoptotic effects, which is essential for the malignant transformation and tumor progression. Most of the Hsp90 inhibitors (Hsp90i) under investigation target the ATP binding site in the N-terminal domain of Hsp90.

View Article and Find Full Text PDF