Satellite radar interferometry (InSAR) techniques have been successfully applied for structural health monitoring of line-infrastructure such as railway. Limited by meter-level spatial resolution of Sentinel-1 satellite radar (SAR) imagery and meter-level geolocation precision, it is still challenging to (1) categorize radar scatterers (e.g.
View Article and Find Full Text PDFIndoor space subdivision is an important aspect of scene analysis that provides essential information for many applications, such as indoor navigation and evacuation route planning. Until now, most proposed scene understanding algorithms have been based on whole point clouds, which has led to complicated operations, high computational loads and low processing speed. This paper presents novel methods to efficiently extract the location of openings (e.
View Article and Find Full Text PDFThis study develops an integrated data-driven and model-driven approach (template matching) that clusters the urban railroad point clouds into three classes of rail track, contact cable, and catenary cable. The employed dataset covers 630 m of the Dutch urban railroad corridors in which there are four rail tracks, two contact cables, and two catenary cables. The dataset includes only geometrical information (three dimensional (3D) coordinates of the points) with no intensity data and no RGB data.
View Article and Find Full Text PDFConsumer-grade range cameras such as the Kinect sensor have the potential to be used in mapping applications where accuracy requirements are less strict. To realize this potential insight into the geometric quality of the data acquired by the sensor is essential. In this paper we discuss the calibration of the Kinect sensor, and provide an analysis of the accuracy and resolution of its depth data.
View Article and Find Full Text PDFWith the increasing point densities provided by airborne laser scanner (ALS) data the requirements on derived products also increase. One major application of ALS data is to provide input for 3D city models. Modeling of roof faces, (3D) road and terrain surfaces can partially be done in an automated manner, although many such approaches are still in a development stage.
View Article and Find Full Text PDF