Introduction: Coronary angiography (CAG) is the standard modality for assessment of coronary stenoses and intraprocedural guidance of percutaneous coronary interventions (PCI). However, the limitations of CAG are well recognized. Intracoronary imaging (ICI) can potentially overcome these limitations.
View Article and Find Full Text PDFBackground: The aim of this study was to define deep tissue temperature during cryotherapy in postoperative hip fracture patients, by using measured skin temperature as input parameter for a simple numerical model. Second, an association was investigated between pain and tissue temperature distribution, to assess cryotherapy-induced analgesia of soft tissue-derived pain.
Methods: Data from 35 participants in an ongoing trial was used.
Phys Rev E Stat Nonlin Soft Matter Phys
August 2010
An air bubble driven by ultrasound can become shape-unstable through a parametric instability. We report time-resolved optical observations of shape oscillations (mode n=2 to 6) of micron-sized single air bubbles. The observed mode number n was found to be linearly related to the ambient radius of the bubble.
View Article and Find Full Text PDFUltrasound Med Biol
September 2008
The occurrence of nonspherical oscillations (or surface modes) of coated microbubbles, used as ultrasound contrast agents in medical imaging, is investigated using ultra-high-speed optical imaging. Optical tweezers designed to micromanipulate single bubbles in 3-D are used to trap the bubbles far from any boundary, enabling a controlled study of the nonspherical oscillations of free-floating bubbles. Nonspherical oscillations appear as a parametric instability and display subharmonic behavior: they oscillate at half the forcing frequency, which was fixed at 1.
View Article and Find Full Text PDFA new optical characterization of the behavior of single ultrasound contrast bubbles is presented. The method consists of insonifying individual bubbles several times successively sweeping the applied frequency, and to record movies of the bubble response up to 25 million frames/s with an ultrahigh speed camera operated in a segmented mode. The method, termed microbubble spectroscopy, enables to reconstruct a resonance curve in a single run.
View Article and Find Full Text PDF