Publications by authors named "Sander Leeflang"

Background: The primary aim of this study was to determine and compare the biomechanical properties of a fractured or intact rib after implant fixation on an embalmed thorax.

Methods: Five systems were fixated on the bilateral fractured or intact (randomly allocated) 6th to 10th rib of five post-mortem embalmed human specimens. Each rib underwent a four-point bending test to determine the bending structural stiffness (Newton per m), load to failure (Newton), failure mode, and the relative difference in bending structural stiffness and load to failure as compared to a non-fixated intact rib.

View Article and Find Full Text PDF

Background: Nuclear factor erythroid 2-related factor 2 (Nrf2) is a crucial transcription factor for cellular redox homeostasis. The association of Nrf2 with elderly female osteoporotic has yet to be fully described. The aim was to elucidate a potential age-dependent Nrf2 contribution to female osteoporosis in mice.

View Article and Find Full Text PDF

Background: Given their highly adjustable and predictable properties, three-dimensional(3D) printed geometrically ordered porous biomaterials offer unique opportunities as orthopedic implants. The performance of such biomaterials is, however, as much a result of the surface properties of the struts as it is of the 3D porous structure. In our previous study, we have investigated the performances of selective laser melted (SLM) Ti-6Al-4V scaffolds which are surface modified by the bioactive glass (BG) and mesoporous bioactive glass (MBG), respectively.

View Article and Find Full Text PDF

Biodegradable stents can provide scaffolding and anti-restenosis benefits in the short term and then gradually disappear over time to free the vessel, among which the Mg-based biodegradable metal stents have been prosperously developed. In the present study, a Mg-8.5Li (wt.

View Article and Find Full Text PDF

Recent advances in additive manufacturing (AM) have enabled the fabrication of functionally graded porous biomaterials (FGPBs) for application as orthopedic implants and bone substitutes. Here, we present a step-wise topological design of FGPB based on diamond unit cells to mimic the structure of the femoral diaphysis. The FGPB was manufactured from Ti-6Al-4V powder using the selective laser melting (SLM) technique.

View Article and Find Full Text PDF

Porous Ti-6Al-4V scaffolds fabricated by means of selective laser melting (SLM), having controllable geometrical features and preferable mechanical properties, have been developed as a class of biomaterials that hold promising potential for bone repair. However, the inherent bio-inertness of the Ti-6Al-4V alloy as the matrix of the scaffolds results in a lack in the ability to stimulate bone ingrowth and regeneration. The aim of the present study was to develop a bioactive coating on the struts of SLM Ti-6Al-4V scaffolds in order to add the desired surface osteogenesis ability.

View Article and Find Full Text PDF

The present research was aimed at developing magnesium-matrix composites that could allow effective control over their physiochemical and mechanical responses when in contact with physiological solutions. A biodegradable, bioactive ceramic - bredigite was chosen as the reinforcing phase in the composites, based on the hypothesis that the silicon- and magnesium-containing ceramic could protect magnesium from fast corrosion and at the same time stimulate cell proliferation. Methods to prepare composites with integrated microstructures - a prerequisite to achieve controlled biodegradation were developed.

View Article and Find Full Text PDF

A custom-designed micro-digital image correlation system was used to track the evolution of the full-surface three-dimensional strain field of Ti6Al4V additively manufactured lattice samples under mechanical loading. The high-magnification capabilities of the method allowed to resolve the strain distribution down to the strut level and disclosed a highly heterogeneous mechanical response of the lattice structure with local strain concentrations well above the nominal global strain level. In particular, we quantified that strain heterogeneity appears at a very early stage of the deformation process and increases with load, showing a strain accumulation pattern with a clear correlation to the later onset of the fracture.

View Article and Find Full Text PDF

In our previous study, we developed Mg-matrix composites with bredigite as the reinforcing phase and achieved improved degradation resistance in comparison with Mg. However, the effects of materials processing method and process parameters on the mechanical behavior of the composites before and during degradation were still unknown. This research was aimed at determining the mechanical properties of Mg-bredigite composites prior to and during degradation.

View Article and Find Full Text PDF

The research concerned the characterization of the hot-working behavior of the as-extruded WE43 magnesium alloy potentially for biomedical applications and the construction of processing maps to guide the choice of forming process parameters. Isothermal uniaxial compression tests were performed over a temperature range of 350-480°C and strain rate range of 0.001-10s(-1).

View Article and Find Full Text PDF

Magnesium alloys possess highly limited room-temperature formabilities. This presents a technological barrier to the fabrication of minitubes for biodegradable vascular stents. The research was aimed at developing precision forming technology to fabricate ZM21 magnesium alloy minitubes with a refined microstructure.

View Article and Find Full Text PDF

To improve the bioactivity and degradation behavior of biodegradable magnesium, biodegradable metal matrix composites with the ZK30 magnesium alloy as the matrix and bioactive glass (BG, 45S5) as the reinforcement were prepared. The microstructures of the ZK30-BG composites showed homogeneous dispersion of BG particles throughout the matrix. XRD and EDX analyses confirmed the retention of the morphological characteristics and composition of BG particles in the composites.

View Article and Find Full Text PDF

In this study, bioactive glass (BG, 45S5) particles were added to a biodegradable magnesium alloy (ZK30) through a semi-solid high-pressure casting process in order to improve the surface biocompatibility of the biomaterial and potentially its bioactivity. The observation of the as-cast microstructures of ZK30-BG composites indicated homogeneous dispersion of BG particles in the matrix. SEM, EDX and EPMA showed the retention of the morphological characteristics and composition of BG particles in the as-cast composite materials.

View Article and Find Full Text PDF