Cold acclimation increases insulin sensitivity, and some level of muscle contraction appears to be needed for provoking this effect. Here 15 men and (postmenopausal) women with overweight or obesity, the majority of whom had impaired glucose tolerance, were intermittently exposed to cold to induce 1 h of shivering per day over 10 days. We determined the effect of cold acclimation with shivering on overnight fasted oral glucose tolerance (primary outcome) and on skeletal muscle glucose transporter 4 translocation (secondary outcome).
View Article and Find Full Text PDFCellular energy metabolism significantly contributes to immune cell function. To further advance immunometabolic research, novel methods to study the metabolism of immune cells in complex samples are required. Here, we introduce CENCAT (cellular energetics through noncanonical amino acid tagging).
View Article and Find Full Text PDFANGPTL4 is an attractive pharmacological target for lowering plasma triglycerides and cardiovascular risk. Since most preclinical studies on ANGPTL4 were performed in male mice, little is known about sexual dimorphism in ANGPTL4 regulation and function. Here, we aimed to study potential sexual dimorphism in ANGPTL4 mRNA and protein levels and ANGPTL4 function.
View Article and Find Full Text PDFEnvironmental exposure to endocrine-disrupting chemicals (EDCs) can lead to metabolic disruption, resulting in metabolic complications including adiposity, dyslipidemia, hepatic lipid accumulation, and glucose intolerance. Hepatic nuclear receptor activation is one of the mechanisms mediating metabolic effects of EDCs. Here, we investigated the potential to use a repeated dose 28-day oral toxicity test for identification of EDCs with metabolic endpoints.
View Article and Find Full Text PDFIntroduction: An elevated postprandial glucose response is associated with an increased risk of cardiometabolic diseases. Existing research suggests large heterogeneity in the postprandial glucose responses to identical meals and food products between individuals, but the effect of other consumed meals during the day and the order of meals during the day on the heterogeneity in postprandial glucose responses still needs to be investigated. In addition, the robustness of the glucose responses to meals or foods is still unknown.
View Article and Find Full Text PDFBackground: Intake of high-fat foods raises postprandial plasma triglycerides and inflammatory markers, which may depend on the type of fat ingested. Dairy products are commonly consumed, but not much is known about the impact of milk fat and the milk fat globule membrane on postprandial inflammation. Here, we aimed to study the effect of milk fat with and without milk fat globule membrane and a vegetable fat blend on post-prandial inflammation, with a focus on blood monocyte gene expression.
View Article and Find Full Text PDFTrends Endocrinol Metab
February 2024
Fasting is part of many weight management and health-boosting regimens. Fasting causes substantial metabolic adaptations in the liver that include the stimulation of fatty acid oxidation and ketogenesis. The induction of fatty acid oxidation and ketogenesis during fasting is mainly driven by interrelated changes in plasma levels of various hormones and an increase in plasma nonesterified fatty acid (NEFA) levels and is mediated transcriptionally by the peroxisome proliferator-activated receptor (PPAR)α, supported by CREB3L3 (cyclic AMP-responsive element-binding protein 3 like 3).
View Article and Find Full Text PDFProg Lipid Res
November 2023
Macrophages are essential innate immune cells and form our first line of immune defense. Also known as professional phagocytes, macrophages interact and take up various particles, including lipids. Defective lipid handling can drive excessive lipid accumulation leading to foam cell formation, a key feature of various cardiometabolic conditions such as atherosclerosis, non-alcoholic fatty liver disease, and obesity.
View Article and Find Full Text PDFThe growth of skeletal muscle relies on a delicate equilibrium between protein synthesis and degradation; however, how proteostasis is managed in the endoplasmic reticulum (ER) is largely unknown. Here, we report that the SEL1L-HRD1 ER-associated degradation (ERAD) complex, the primary molecular machinery that degrades misfolded proteins in the ER, is vital to maintain postnatal muscle growth and systemic energy balance. Myocyte-specific SEL1L deletion blunts the hypertrophic phase of muscle growth, resulting in a net zero gain of muscle mass during this developmental period and a 30% reduction in overall body growth.
View Article and Find Full Text PDFBackground: Lipolysis is a key metabolic pathway in adipocytes that renders stored triglycerides available for use by other cells and tissues. Non-esterified fatty acids (NEFAs) are known to exert feedback inhibition on adipocyte lipolysis, but the underlying mechanisms have only partly been elucidated. An essential enzyme in adipocyte lipolysis is ATGL.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
March 2023
Fasting and starvation were common occurrences during human evolution and accordingly have been an important environmental factor shaping human energy metabolism. Humans can tolerate fasting reasonably well through adaptative and well-orchestrated time-dependent changes in energy metabolism. Key features of the adaptive response to fasting are the breakdown of liver glycogen and muscle protein to produce glucose for the brain, as well as the gradual depletion of the fat stores, resulting in the release of glycerol and fatty acids into the bloodstream and the production of ketone bodies in the liver.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptor γ (PPARγ) is the master regulator of adipocyte differentiation, and mutations that interfere with its function cause lipodystrophy. PPARγ is a highly modular protein, and structural studies indicate that PPARγ domains engage in several intra- and inter-molecular interactions. How these interactions modulate PPARγ's ability to activate target genes in a cellular context is currently poorly understood.
View Article and Find Full Text PDFAngiopoietin-like proteins, ANGPTL3, ANGPTL4, and ANGPTL8, are involved in regulating plasma lipids. In vitro and animal-based studies point to LPL and endothelial lipase (EL, LIPG) as key targets of ANGPTLs. To examine the ANGPTL mechanisms for plasma lipid modulation in humans, we pursued a genetic mimicry analysis of enhancing or suppressing variants in the LPL, LIPG, lipase C hepatic type (LIPC), ANGPTL3, ANGPTL4, and ANGPTL8 genes using data on 248 metabolic parameters derived from over 110,000 nonfasted individuals in the UK Biobank and validated in over 13,000 overnight fasted individuals from 11 other European populations.
View Article and Find Full Text PDFObjective: SGLT2 inhibitors increase urinary glucose excretion and have beneficial effects on cardiovascular and renal outcomes; the underlying mechanism may be metabolic adaptations due to urinary glucose loss. Here, we investigated the cellular and molecular effects of 5 weeks of dapagliflozin treatment on skeletal muscle metabolism in type 2 diabetes patients.
Methods: Twenty-six type 2 diabetes mellitus patients were randomized to a 5-week double-blind, cross-over study with 6-8-week wash-out.
Primary tumors and distant site metastases form a bidirectionally communicating system. Yet, the molecular mechanisms of this crosstalk are poorly understood. Here, we identified the proteolytically cleaved fragments of angiopoietin-like 4 (ANGPTL4) as contextually active protumorigenic and antitumorigenic contributors in this communication ecosystem.
View Article and Find Full Text PDFObjective: Perfluoroalkyl substances (PFAS) are man-made chemicals with demonstrated endocrine-disrupting properties. Exposure to perfluorooctanoic acid (PFOA) has been linked to disturbed metabolism via the liver, although the exact mechanism is not clear. Moreover, information on the metabolic effects of the new PFAS alternative GenX is limited.
View Article and Find Full Text PDFTriglycerides are carried in the bloodstream as part of very low-density lipoproteins (VLDLs) and chylomicrons, which represent the triglyceride-rich lipoproteins. Triglyceride-rich lipoproteins and their remnants contribute to atherosclerosis, possibly by carrying remnant cholesterol and/or by exerting a proinflammatory effect on macrophages. Nevertheless, little is known about how macrophages process triglyceride-rich lipoproteins.
View Article and Find Full Text PDFElectrical pulse stimulation (EPS) has proven to be a useful tool to interrogate cell-specific responses to muscle contraction. In the present study, we aimed to uncover networks of signaling pathways and regulatory molecules responsible for the metabolic effects of exercise in human skeletal muscle cells exposed to chronic EPS. Differentiated myotubes from young male subjects were exposed to EPS protocol 1 (i.
View Article and Find Full Text PDFAngiopoietin-like 4 (ANGPTL4) is an important regulator of plasma triglyceride (TG) levels and an attractive pharmacological target for lowering plasma lipids and reducing cardiovascular risk. Here, we aimed to study the efficacy and safety of silencing ANGPTL4 in the livers of mice using hepatocyte-targeting GalNAc-conjugated antisense oligonucleotides (ASOs). Compared with injections with negative control ASO, four injections of two different doses of ANGPTL4 ASO over 2 weeks markedly downregulated ANGPTL4 levels in liver and adipose tissue, which was associated with significantly higher adipose LPL activity and lower plasma TGs in fed and fasted mice, as well as lower plasma glucose levels in fed mice.
View Article and Find Full Text PDFObjective: Brown adipose tissue (BAT) burns fatty acids (FAs) to produce heat, and shows diurnal oscillation in glucose and triglyceride (TG)-derived FA-uptake, peaking around wakening. Here we aimed to gain insight in the diurnal regulation of metabolic BAT activity.
Methods: RNA-sequencing, chromatin immunoprecipitation (ChIP)-sequencing, and lipidomics analyses were performed on BAT samples of wild type C57BL/6J mice collected at 3-hour intervals throughout the day.
In response to inflammatory activation by pathogens, macrophages accumulate triglycerides in intracellular lipid droplets. The mechanisms underlying triglyceride accumulation and its exact role in the inflammatory response of macrophages are not fully understood. Here, we aim to further elucidate the mechanism and function of triglyceride accumulation in the inflammatory response of activated macrophages.
View Article and Find Full Text PDFTriglycerides are carried in the bloodstream as the components of very low-density lipoproteins and chylomicrons. These circulating triglycerides are primarily hydrolyzed in muscle and adipose tissue by the enzyme lipoprotein lipase (LPL). The activity of LPL is regulated by numerous mechanisms, including by three members of the angiopoietin-like protein family: ANGPTL3, ANGPTL4, and ANGPTL8.
View Article and Find Full Text PDFPurpose Of Review: Elevated LDL-C and triglycerides are important risk factors for the development of atherosclerotic cardiovascular disease. Although effective therapies for lipid lowering exist, many people do not reach their treatment targets. In the last two decades, ANGPTL3 has emerged as a novel therapeutic target for lowering plasma LDL-C and triglycerides.
View Article and Find Full Text PDF