Publications by authors named "Sander K Heijs"

Bacterial and archaeal communities in sediments obtained from three geographically-distant mud volcanoes, a control site and a microbial mat in the Eastern Mediterranean deep-sea were characterized using direct 16S rRNA gene analyses. The data were thus in relation to the chemical characteristics of the (stratified) habitats to infer community structure-habitat relationships. The bacterial sequences in the different habitats were related to those of Actinobacteria, Bacilli, Chloroflexi, Alpha-, Beta-, Gamma-, Delta- and Epsilonproteobacteria and unclassified bacteria, including the JS1 group.

View Article and Find Full Text PDF

In the Eastern Mediterranean Sea, deep hypersaline anoxic basins (DHABs) and deep-sea sediment contain anoxic environments where sulfate reduction is an important microbial metabolic process. The objective of this study was to characterize the sulfate-reducing community in the brine and interface of the DHABs L'Atalante and Urania based on a phylogenetic analysis of the dissimilatory sulfite reductase gene (dsrA). Results demonstrated that the sulfate-reducing community was diverse, except for the sulfidogenic brine of the Urania basin.

View Article and Find Full Text PDF

This study provides data on the diversities of bacterial and archaeal communities in an active methane seep at the Kazan mud volcano in the deep Eastern Mediterranean sea. Layers of varying depths in the Kazan sediments were investigated in terms of (1) chemical parameters and (2) DNA-based microbial population structures. The latter was accomplished by analyzing the sequences of directly amplified 16S rRNA genes, resulting in the phylogenetic analysis of the prokaryotic communities.

View Article and Find Full Text PDF

A white, filamentous microbial mat at the Milano mud volcano in the Eastern Mediterranean Sea was sampled during the Medinaut cruise of the R/V Nadir in 1998. The composition of the mat community was characterized using a combination of phylogenetic and lipid biomarker methods. The mat sample was filtered through 0.

View Article and Find Full Text PDF