Self-renewing tissues require that a constant number of proliferating cells is maintained over time. This maintenance can be ensured at the single-cell level or the population level. Maintenance at the population level leads to fluctuations in the number of proliferating cells over time.
View Article and Find Full Text PDFThe inherent stochasticity of metabolism raises a critical question for understanding homeostasis: are cellular processes regulated in response to internal fluctuations? Here, we show that, in E. coli cells under constant external conditions, catabolic enzyme expression continuously responds to metabolic fluctuations. The underlying regulatory feedback is enabled by the cyclic AMP (cAMP) and cAMP receptor protein (CRP) system, which controls catabolic enzyme expression based on metabolite concentrations.
View Article and Find Full Text PDFMolecular manipulation by optical tweezers is a central technique to study the folded states of individual proteins and how they depend on interactions with molecules including DNA, ligands, and other proteins. One of the key challenges of this approach is to stably attach DNA handles in an efficient manner. Here, we provide detailed descriptions of a universal approach to covalently link long DNA tethers of up to 5000 base pairs to proteins with or without native cysteines.
View Article and Find Full Text PDFOrganoids are a major new tool to study tissue renewal. However, characterizing the underlying differentiation dynamics remains challenging. Here, we developed TypeTracker, which identifies cell fates by AI-enabled cell tracking and propagating end point fates back along the branched lineage trees.
View Article and Find Full Text PDFSmall Heat Shock Proteins (sHSPs) are key components of our Protein Quality Control system and are thought to act as reservoirs that neutralize irreversible protein aggregation. Yet, sHSPs can also act as sequestrases, promoting protein sequestration into aggregates, thus challenging our understanding of their exact mechanisms of action. Here, we employ optical tweezers to explore the mechanisms of action of the human small heat shock protein HSPB8 and its pathogenic mutant K141E, which is associated with neuromuscular disease.
View Article and Find Full Text PDFSingle molecule techniques are particularly well suited for investigating the processes of protein folding and chaperone assistance. However, current assays provide only a limited perspective on the various ways in which the cellular environment can influence the folding pathway of a protein. In this study, a single molecule mechanical interrogation assay is developed and used to monitor protein unfolding and refolding within a cytosolic solution.
View Article and Find Full Text PDFEvolution has traditionally been a historical and descriptive science, and predicting future evolutionary processes has long been considered impossible. However, evolutionary predictions are increasingly being developed and used in medicine, agriculture, biotechnology and conservation biology. Evolutionary predictions may be used for different purposes, such as to prepare for the future, to try and change the course of evolution or to determine how well we understand evolutionary processes.
View Article and Find Full Text PDFThe chaperone heat shock protein 90 (Hsp90) is well known to undergo important conformational changes, which depend on nucleotide and substrate interactions. Conversely, how the conformations of its unstable and disordered substrates are affected by Hsp90 is difficult to address experimentally yet is central to its function. Here, using optical tweezers, we find that Hsp90 promotes local contractions in unfolded chains that drive their global compaction down to dimensions of folded states.
View Article and Find Full Text PDFMolecular catch bonds are ubiquitous in biology and essential for processes like leucocyte extravasion and cellular mechanosensing. Unlike normal (slip) bonds, catch bonds strengthen under tension. The current paradigm is that this feature provides 'strength on demand', thus enabling cells to increase rigidity under stress.
View Article and Find Full Text PDFStem-cell derived in vitro systems, such as organoids or embryoids, hold great potential for modeling in vivo development. Full control over their initial composition, scalability, and easily measurable dynamics make those systems useful for studying specific developmental processes in isolation. Here we report the formation of gastruloids consisting of mouse embryonic stem cells (mESCs) and extraembryonic endoderm (XEN) cells.
View Article and Find Full Text PDFWhile CRISPR-Cas defence mechanisms have been studied on a population level, their temporal dynamics and variability in individual cells have remained unknown. Using a microfluidic device, time-lapse microscopy and mathematical modelling, we studied invader clearance in Escherichia coli across multiple generations. We observed that CRISPR interference is fast with a narrow distribution of clearance times.
View Article and Find Full Text PDFGrowth and division are central to cell size. Bacteria achieve size homeostasis by dividing when growth has added a constant size since birth, termed the adder principle, by unknown mechanisms. Growth is well known to be regulated by guanosine tetraphosphate (ppGpp), which controls diverse processes from ribosome production to metabolic enzyme activity and replication initiation and whose absence or excess can induce stress, filamentation, and small growth-arrested cells.
View Article and Find Full Text PDFOrganoids have emerged as powerful model systems to study organ development and regeneration at the cellular level. Recently developed microscopy techniques that track individual cells through space and time hold great promise to elucidate the organizational principles of organs and organoids. Applied extensively in the past decade to embryo development and 2D cell cultures, cell tracking can reveal the cellular lineage trees, proliferation rates, and their spatial distributions, while fluorescent markers indicate differentiation events and other cellular processes.
View Article and Find Full Text PDFProteins commonly fold co-translationally at the ribosome, while the nascent chain emerges from the ribosomal exit tunnel. Protein domains that are sufficiently small can even fold while still located inside the tunnel. However, the effect of the tunnel on the folding dynamics of these domains is not well understood.
View Article and Find Full Text PDFTime-lapse microscopy is routinely used to follow cells within organoids, allowing direct study of division and differentiation patterns. There is an increasing interest in cell tracking in organoids, which makes it possible to study their growth and homeostasis at the single-cell level. As tracking these cells by hand is prohibitively time consuming, automation using a computer program is required.
View Article and Find Full Text PDFGene regulation networks allow organisms to adapt to diverse environmental niches. However, the constraints underlying the evolution of gene regulation remain ill defined. Here, we show that partial order-a concept that ranks network output levels as a function of different input signals-identifies such constraints.
View Article and Find Full Text PDFElucidating elementary mechanisms that underlie bacterial diversity is central to ecology and microbiome research. Bacteria are known to coexist by metabolic specialization, cooperation and cyclic warfare. Many species are also motile, which is studied in terms of mechanism, benefit, strategy, evolution and ecology.
View Article and Find Full Text PDFMany proteins form dynamic complexes with DNA, RNA, and other proteins, which often involves protein conformational changes that are key to function. Yet, methods to probe these critical dynamics are scarce. Here we combine optical tweezers with fluorescence imaging to simultaneously monitor the conformation of individual proteins and their binding to partner proteins.
View Article and Find Full Text PDFThe limits of evolution have long fascinated biologists. However, the causes of evolutionary constraint have remained elusive due to a poor mechanistic understanding of studied phenotypes. Recently, a range of innovative approaches have leveraged mechanistic information on regulatory networks and cellular biology.
View Article and Find Full Text PDFAn Amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFThe ability to reverse protein aggregation is vital to cells. Hsp100 disaggregases such as ClpB and Hsp104 are proposed to catalyse this reaction by translocating polypeptide loops through their central pore. This model of disaggregation is appealing, as it could explain how polypeptides entangled within aggregates can be extracted and subsequently refolded with the assistance of Hsp70.
View Article and Find Full Text PDFHoldase chaperones are known to be central to suppressing aggregation, but how they affect substrate conformations remains poorly understood. Here, we use optical tweezers to study how the holdase Hsp33 alters folding transitions within single maltose binding proteins and aggregation transitions between maltose binding protein substrates. Surprisingly, we find that Hsp33 not only suppresses aggregation but also guides the folding process.
View Article and Find Full Text PDF