Aflatoxin B1 (AFB1) is the most toxic mycotoxin, naturally occurring in food items, and it causes several types of lethal diseases. Therefore, a rapid and convenient detection method for AFB1 is the first step toward overcoming the effect of AFB1. The current work presents the development of an efficient microfluidic electrochemical-based biosensor using tri-manganese tetroxide nanoparticles (MnOnps) for AFB1 detection.
View Article and Find Full Text PDFBiosens Bioelectron
October 2016
Biosens Bioelectron
May 2015
In our present study, we developed an optical biosensor for direct determination of salivary glucose by using immobilized glucose oxidase enzyme on filter paper strip (specific activity 1.4 U/strip) and then reacting it with synthetic glucose samples in presence of co-immobilized color pH indicator. The filter paper changed color based on concentration of glucose in reaction media and hence, by scanning this color change (using RGB profiling) through an office scanner and open source image processing software (GIMP) the concentration of glucose in the reaction medium could be deduced.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
March 2013
Eggshell membrane is a natural material, essentially made up of protein fibers having flexibility in the aqueous solution and possessing gas and water permeability. It is used as a biomembrane for immobilization of urease for the development of a potentiometric urea biosensor. Eggshell membrane was treated with polyethyleneimine (PEI) to impart polycation characteristics.
View Article and Find Full Text PDFA fully integrated microchip for performing cell lysis, polymerase chain reaction (PCR) and quantitative analysis of DNA amplicons in a single step is described herein. The chip was built on glass substrate using an indium-tin-oxide (ITO) microheater and PDMS engraved microchannels, which integrated an electrochemical cell lysis zone, a continuous flow PCR module and capillary electrophoresis amperometric detection (CE-AD) system. The total length of the microchannel was 4625 mm for performing 25 cycles of flow-through PCR and was laid on a handheld form factor of 96 × 96 mm(2) area.
View Article and Find Full Text PDFBiosens Bioelectron
February 2013
Sulfur-containing amino acids, such as cysteine and homocysteine play crucial roles in biological systems for the diagnosis of medical states. In this regard, this paper deals with separation, aliquot and detection of amino thiols on a microchip capillary electrophoresis with electrochemical detection in an inverted double Y-shaped microchannel. Unlike the conventional capillary electrophoresis, the modified microchannel design helps in storing the separated thiols in different reservoirs for further analysis, if required; and also eliminates the need of electrodes regeneration.
View Article and Find Full Text PDFNumerous studies have identified beta-amyloid(1-42) protein (Abeta42) in the cerebrospinal fluid as a potential biomarker of Alzheimer's disease. It is of particular interest to establish the diagnosis before reaching the stage of clinical severity. The current methods for studying amyloid detection, however, is often time-consuming, expensive, and labor intensive, making the analytical process very slow.
View Article and Find Full Text PDFDetection and quantitation of nucleic acids have gained much importance in the last couple of decades, especially in the post-human genome project era. Such processes are tedious, time consuming and require expensive reagents and equipment. Therefore, in the present study, we demonstrated a simple process for the separation and analysis of small DNA fragments using capillary electrophoretic amperometric detection on an inexpensive disposable glass microchip.
View Article and Find Full Text PDFA DNA hybridization sensor using pentacene thin film transistors (TFTs) is an excellent candidate for disposable sensor applications due to their low-cost fabrication process and fast detection. We fabricated pentacene TFTs on glass substrate for the sensing of DNA hybridization. The ss-DNA (polyA/polyT) or ds-DNA (polyA/polyT hybrid) were immobilized directly on the surface of the pentacene, producing a dramatic change in the electrical properties of the devices.
View Article and Find Full Text PDFThe lyophilized biomass of bacterium Brevibacterium ammoniagenes was immobilized in polystyrene sulphonate-polyaniline (PSS-PANI) conducting polymer on a Pt twin wire electrode by potentiostatic electropolymerization. The bacterial cells retained their viability as well as urease activity under entrapped state, as confirmed with bacterial live-dead fluorescent assay and enzymatic assays. The entrapped cells were visualized using scanning electron microscope.
View Article and Find Full Text PDFA urea biosensor was developed using the urease entrapped in polyvinyl alcohol (PVA) and polyacrylamide (PAA) composite polymer membrane. The membrane was prepared on the cheesecloth support by gamma-irradiation induced free radical polymerization. The performance of the biosensor was monitored using a flow-through cell, where the membrane was kept in conjugation with the ammonia selective electrode and urea was added as substrate in phosphate buffer medium.
View Article and Find Full Text PDFAn optical microbial biosensor was described for the detection of methyl parathion pesticide. Whole cells of Flavobacterium sp. were immobilized by trapping in glass fiber filter and were used as biocomponent along with optic fiber system.
View Article and Find Full Text PDFComposite polymer membrane of polyvinyl alcohol (PVA) and acrylamide was prepared on cheesecloth support by gamma-irradiation induced free radical polymerization. The enzyme urease was entrapped in the membrane during polymerization and was cross-linked within the matrix using glutaraldehyde. The membranes could be reused a number of times without significant loss of urease activity.
View Article and Find Full Text PDF