Objectives: Brain tumor classification is amongst the most complex and challenging jobs in the computer domain. The latest advances in brain tumor detection systems (BTDS) are presented as they can inspire new researchers to deliver new architectures for effective and efficient tumor detection. Here, the data of the multi-modal brain tumor segmentation task is employed, which has been registered, skull stripped, and histogram matching is conducted with the ferrous volume of high contrast.
View Article and Find Full Text PDFIn accordance with the inability of various hair artefacts subjected to dermoscopic medical images, undergoing illumination challenges that include chest-Xray featuring conditions of imaging acquisi-tion situations built with clinical segmentation. The study proposed a novel deep-convolutional neural network (CNN)-integrated methodology for applying medical image segmentation upon chest-Xray and dermoscopic clinical images. The study develops a novel technique of segmenting medical images merged with CNNs with an architectural comparison that incorporates neural networks of U-net and fully convolutional networks (FCN) schemas with loss functions associated with Jaccard distance and Binary-cross entropy under optimised stochastic gradient descent + Nesterov practices.
View Article and Find Full Text PDF