Background/objective: Intestinal fibrosis, a prominent consequence of inflammatory bowel disease (IBD), presents considerable difficulty owing to the absence of licensed antifibrotic therapies. This review assesses the therapeutic potential of phytochemicals as alternate methods for controlling intestinal fibrosis. Phytochemicals, bioactive molecules originating from plants, exhibit potential antifibrotic, anti-inflammatory, and antioxidant activities, targeting pathways associated with inflammation and fibrosis.
View Article and Find Full Text PDFThe endocannabinoid system has garnered attention as a potential therapeutic target in a range of pathological disorders. Cannabinoid receptors type 2 (CB2) are a class of G protein-coupled receptors responsible for transmitting intracellular signals triggered by both endogenous and exogenous cannabinoids, including those derived from plants (phytocannabinoids) or manufactured synthetically (synthetic cannabinoids). Recent recognition of the role of CB2 receptors in fibrosis has fueled interest in therapeutic targeting of CB2 receptors in fibrosis.
View Article and Find Full Text PDFInflammation of the GI tract leads to compromised epithelial barrier integrity, which increases intestine permeability. A compromised intestinal barrier is a critical event that leads to microbe entry and promotes inflammatory responses. Inflammatory bowel diseases that comprise Crohn's disease (CD) and ulcerative colitis (UC) show an increase in intestinal permeability.
View Article and Find Full Text PDFInflammatory bowel disease, comprising Crohn's disease (CD) and ulcerative colitis (UC), is often debilitating. The disease etiology is multifactorial, involving genetic susceptibility, microbial dysregulation, abnormal immune activation, and environmental factors. Currently, available drug therapies are associated with adverse effects when used long-term.
View Article and Find Full Text PDFTyphimurium infection of the gastrointestinal tract leads to damage that compromises the integrity of the intestinal epithelium and results in enterocolitis and inflammation. infection promotes the expression of inflammasome NLRP3, leading to activation and release of proinflammatory cytokines such as IL-1, and the infected host often displays altered nutrient levels. To date, the effect of infection and proinflammatory cytokine IL-1 on the intestinal uptake of ascorbic acid (AA) is unknown.
View Article and Find Full Text PDFInflammatory bowel diseases (IBDs) are chronic inflammatory disorders that include Crohn's disease (CD) and ulcerative colitis (UC). The incidence of IBD is rising globally. However, the etiology of IBD is complex and governed by multiple factors.
View Article and Find Full Text PDFThe incidence and prevalence of inflammatory bowel disease (IBD, Crohn's disease, and ulcerative colitis) are increasing worldwide. The etiology of IBD is multifactorial, including genetic predisposition, dysregulated immune response, microbial dysbiosis, and environmental factors. However, many of the existing therapies are associated with marked side effects.
View Article and Find Full Text PDFα-Bisabolol is one of the important monocyclic sesquiterpenes, derived naturally from essential oils of many edible and ornamental plants. It was first obtained from , commonly known as chamomile or German chamomile. The available literature indicates that this plant along with other α-Bisabolol containing plants is popularly used in traditional medicine for potential health benefits and general wellbeing.
View Article and Find Full Text PDFInflammatory bowel diseases (IBD) are chronic inflammatory disorders with increasing incidence and prevalence worldwide. Here, we investigated thymoquinone (TQ), a naturally occurring phytochemical present in , for anti-inflammatory effects in colonic inflammation. To address this, we used in vivo (mice) and in vitro (HT-29 cells) models in this investigation.
View Article and Find Full Text PDFNerolidol (NED) is a naturally occurring sesquiterpene alcohol present in various plants with potent anti-inflammatory effects. In the current study, we investigated NED as a putative anti-inflammatory compound in an experimental model of colonic inflammation. C57BL/6J male black mice (C57BL/6J) were administered 3% dextran sodium sulfate (DSS) in drinking water for 7 days to induce colitis.
View Article and Find Full Text PDFPlant-based compounds or phytochemicals such as alkaloids, glycosides, flavonoids, volatile oils, tannins, resins, and polyphenols have been used extensively in traditional medicine for centuries and more recently in Western alternative medicine. Extensive evidence suggests that consumption of dietary polyphenolic compounds lowers the risk of inflammatory diseases. The anti-inflammatory properties of several phytochemicals are mediated through ligand-inducible peroxisome proliferator-activated receptors (PPARs), particularly the PPARγ transcription factor.
View Article and Find Full Text PDFAcetaminophen (APAP), which is also known as paracetamol or -acetyl--aminophenol is a safe and potent drug for fever, pain and inflammation when used at its normal therapeutic doses. It is available as over-the-counter drug and used by all the age groups. The overdose results in acute liver failure that often requires liver transplantation.
View Article and Find Full Text PDFFrondanol is a nutraceutical lipid extract of the intestine of the edible Atlantic sea cucumber, with potent anti-inflammatory effects. In the current study, we investigated Frondanol as a putative anti-inflammatory compound in an experimental model of colonic inflammation. C57BL/6J male black mice (C57BL/6J) were given 3% dextran sodium sulfate (DSS) in drinking water for 7 days to induce colitis.
View Article and Find Full Text PDFThe protective effect of methanolic extract of Lagerstroemia speciosaleaves (LS) was evaluated against dextran sulfate sodium (DSS) induced ulcerative colitis in C57BL/6 mice. The administration of DSS (2.5% in drinking water ad libitum) in C57BL/6 mice induced ulcerative colitis in 7 days.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
December 2015
The pregnant uterus is a smooth muscle organ whose pattern of contraction is dictated by the propagation of electrical impulses. Such electrical activity may originate from one or more pacemakers, but the location of these sites has not yet been determined. To detect the location of the pacemaker in the gravid uterus, two approaches were used: 1) determine the site from where the contraction started using isolated uteri from the pregnant guinea pig, and videotape their contractions; and 2) record, in isolated uteri from pregnant term rats, with 240 extracellular electrodes simultaneously, and determine where the electrical bursts started.
View Article and Find Full Text PDFBackground: Ethanol ingestion causes a variety of gastrointestinal disturbances including motility alterations. Slow wave propagation coordinates gastrointestinal motility, and abnormal slow wave activity is thought to contribute to motility disorders. To date, however, little is known about the effect of acute ethanol on motility disturbances associated with slow wave activity.
View Article and Find Full Text PDFVitamin B2 (riboflavin, RF) is essential for normal human health. Mammals obtain RF from exogenous sources via intestinal absorption and prevent its urinary loss by reabsorption in the kidneys. Both of these absorptive events are carrier-mediated and involve specific RF transporters (RFVTs).
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
April 2013
Intestinal epithelial cells undergo differentiation as they move from the crypt to the villi, a process that is associated with up- and downregulation in expression of a variety of genes, including those involved in nutrient absorption. Whether the intestinal uptake process of vitamin B(2) [riboflavin (RF)] also undergoes differentiation-dependent regulation and the mechanism through which this occurs are not known. We used human-derived intestinal epithelial Caco-2 cells and native rat intestine as models to address these issues.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
January 2013
The Slc5a6 gene expresses a plasma membrane protein involved in the transport of the water-soluble vitamin biotin; the transporter is commonly referred to as the sodium-dependent multivitamin transporter (SMVT) because it also transports pantothenic acid and lipoic acid. The relative contribution of the SMVT system toward carrier-mediated biotin uptake in the native intestine in vivo has not been established. We used a Cre/lox technology to generate an intestine-specific (conditional) SMVT knockout (KO) mouse model to address this issue.
View Article and Find Full Text PDFBackground: Ascorbic acid (AA) is required for normal human health and development. Human intestine expresses two sodium-dependent vitamin C transporters (hSVCT-1 and -2) that mediate cellular AA transport, with hSVCT1 targeting to the apical membrane of polarized epithelia. Studies have shown a role for the Rab8a in the apical membrane targeting of transporters in intestinal cells.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
March 2012
Thiamin is essential for normal function of pancreatic acinar cells, and its deficiency leads to a reduction in pancreatic digestive enzymes. We have recently shown that thiamin uptake by rat pancreatic acinar cells is carrier-mediated and that both thiamin transporter (THTR)-1 and THTR-2 are expressed in these cells; little, however, is known about the relative contribution of these transporters toward total carrier-mediated thiamin uptake by these cells. We addressed this issue using a gene-specific silencing approach (siRNA) in mouse-derived pancreatic acinar 266-6 cells and Slc19a2 and Slc19a3 knockout mouse models.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
November 2011
Thiamin is important for normal function of pancreatic acinar cells, but little is known about its mechanism of uptake and about the effect of chronic alcohol use on the process. We addressed these issues using freshly isolated rat primary and rat-derived cultured AR42J pancreatic acinar cells as models. Results showed thiamin uptake by both primary and cultured AR42J pancreatic acinar cells to be via a specific carrier-mediated mechanism and that both of the thiamin transporters 1 and 2 (THTR-1 and THTR-2) are expressed in these cells.
View Article and Find Full Text PDFTransport of riboflavin (RF) across both the brush border membrane (BBM) and basolateral membrane (BLM) of the polarized enterocyte occurs via specific carrier-mediated mechanisms. Although, three human riboflavin transporters (hRFTs), i.e.
View Article and Find Full Text PDFNormal body homeostasis of biotin is critically dependent on its renal recovery by kidney proximal tubular epithelial cells, a process that is mediated by the sodium-dependent multivitamin transporter (SMVT; a product of the SLC5A6 gene). Chronic ethanol consumption interferes with the renal reabsorption process of a variety of nutrients, including water-soluble vitamins. To date, however, there is nothing known about the effect of chronic alcohol feeding on physiological and molecular parameters of the renal biotin reabsorption process.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
March 2011
The water-soluble vitamin biotin is essential for normal cellular functions and its deficiency leads to a variety of clinical abnormalities. Mammals obtain biotin from exogenous sources via intestinal absorption, a process mediated by the sodium-dependent multivitamin transporter (SMVT). Chronic alcohol use in humans is associated with a significant reduction in plasma biotin levels, and animal studies have shown inhibition in intestinal biotin absorption by chronic alcohol feeding.
View Article and Find Full Text PDF