It is essential for the advancement of science that researchers share, reuse and reproduce each other's workflows and protocols. The FAIR principles are a set of guidelines that aim to maximize the value and usefulness of research data, and emphasize the importance of making digital objects findable and reusable by others. The question of how to apply these principles not just to data but also to the workflows and protocols that consume and produce them is still under debate and poses a number of challenges.
View Article and Find Full Text PDFUnstructured clinical narratives are continuously being recorded as part of delivery of care in electronic health records, and dedicated tagging staff spend considerable effort manually assigning clinical codes for billing purposes. Despite these efforts, however, label availability and accuracy are both suboptimal. In this retrospective study, we aimed to automate the assignment of top-level International Classification of Diseases version 9 (ICD-9) codes to clinical records from human and veterinary data stores using minimal manual labor and feature curation.
View Article and Find Full Text PDFComplex genomic rearrangements (CGRs) are a hallmark of many human diseases. Recently, CGRs were suggested to result from microhomology-mediated break-induced replication (MMBIR), a replicative mechanism involving template switching at positions of microhomology. Currently, the cause of MMBIR and the proteins mediating this process remain unknown.
View Article and Find Full Text PDFThe repair of chromosomal double strand breaks (DSBs) is crucial for the maintenance of genomic integrity. However, the repair of DSBs can also destabilize the genome by causing mutations and chromosomal rearrangements, the driving forces for carcinogenesis and hereditary diseases. Break-induced replication (BIR) is one of the DSB repair pathways that is highly prone to genetic instability.
View Article and Find Full Text PDFGenetic instabilities, including mutations and chromosomal rearrangements, lead to cancer and other diseases in humans and play an important role in evolution. A frequent cause of genetic instabilities is double-strand DNA breaks (DSBs), which may arise from a wide range of exogeneous and endogeneous cellular factors. Although the repair of DSBs is required, some repair pathways are dangerous because they may destabilize the genome.
View Article and Find Full Text PDF