The study of spermatogenesis requires accurate identification of the stages of the cycle of the seminiferous epithelium. A stage refers to the unique association of germ cell types at a particular phase of development, as seen in a cross-sectioned seminiferous tubule. Stage-identification, however, is a daunting task.
View Article and Find Full Text PDFSmooth muscle contraction is a dynamic process driven by acto-myosin interactions that are controlled by multiple regulatory proteins. Our studies have shown that members of the AP-1 transcription factor family control discrete behaviors of smooth muscle cells (SMC) such as growth, migration and fibrosis. However, the role of AP-1 in regulation of smooth muscle contractility is incompletely understood.
View Article and Find Full Text PDFFibroproliferative remodeling in smooth muscle-rich hollow organs is associated with aberrant extracellular matrix (ECM) production. Although mechanical stimuli regulate ECM protein expression, the transcriptional mediators of this process remain poorly defined. Previously, we implicated AP-1 as a mediator of smooth muscle cell (SMC) mechanotransduction; however, its role in stretch-induced ECM regulation has not been explored.
View Article and Find Full Text PDFOverdistension of hollow organs evokes pathological changes characterized by smooth muscle remodeling. Mechanical stimuli induce smooth muscle cell (SMC) growth through acute activation of signaling cascades and by increased expression of soluble mitogens. Physical forces have also been implicated in ligand-independent activation of receptor tyrosine kinases, including the platelet-derived growth factor (PDGF) receptor, although the extent to which this occurs in intact tissue is unknown.
View Article and Find Full Text PDFFunctionally immature spermatozoa leave the testis mature during epididymal transit. This process of maturation involves either addition of new proteins or modification of existing proteins onto the sperm domains that are responsible for domain-specific functions. Epididymal proteins are preferred targets for immunocontraception.
View Article and Find Full Text PDFTestis-specific promoters are unique in that relatively short proximal promoters of several genes have been shown to be capable of directing tissue- and cell-type-specific expression in transgenic mice. How such small promoter fragments perform the dual functions of maintaining a silenced state in somatic tissues and activating gene expression in the correct germ-cell type in testis remains poorly understood. Studies from our laboratory using the round spermatid-specific SP-10 gene as an experimental model have provided some insights into the mechanisms involved.
View Article and Find Full Text PDFIdentification of transcription factors involved in the progression of spermatogenic cell differentiation is important for understanding the molecular mechanisms controlling spermatogenesis. To this end, we utilized the mouse SP-10 gene encoding a conserved acrosomal protein as an experimental model. Promoter analysis in transgenic mice had previously shown that the -186/-91 region of the SP-10 promoter was critical for spermatid-specific expression.
View Article and Find Full Text PDFMonoclonal antibodies (mabs) have been used as a powerful tool for identification of newer sperm proteins. However, conventional hybridoma technology rarely provides chance to obtain mabs to epididymal proteins. To increase this chance, we have used an alternate method of neonatal tolerization.
View Article and Find Full Text PDF