The study presents a novel, one-pot, and scalable solid-state reaction scheme to prepare bismuth sulphide (BiS)-reduced graphene oxide (rGO) nanocomposites using bismuth oxide (BiO), thiourea (TU), and graphene oxide (GO) as starting materials for energy storage applications. The impact of GO loading concentration on the electrochemical performance of the nanocomposites was investigated. The reaction follows a diffusion substitution pathway, gradually transforming BiO powder into BiS nanostrips, concurrently converting GO into rGO.
View Article and Find Full Text PDFIn the present investigations, Zinc oxide (ZnO) and ZnO-ZrO composite nanoparticles were synthesized by ultrasonic assisted wet chemical method to investigate their structural, optical and humidity sensing properties. The synthesized nanoparticles were characterized by the techniques like X ray diffraction (XRD), UV-Vis absorption spectroscopy, Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). XRD and EDS were employed to confirm the phase formation and phase purity respectively.
View Article and Find Full Text PDF