Recurrent outbreaks of novel zoonotic coronavirus (CoV) diseases in recent years have highlighted the importance of developing therapeutics with broad-spectrum activity against CoVs. Because all CoVs use -1 programmed ribosomal frameshifting (-1 PRF) to control expression of key viral proteins, the frameshift signal in viral mRNA that stimulates -1 PRF provides a promising potential target for such therapeutics. To test the viability of this strategy, we explored whether small-molecule inhibitors of -1 PRF in SARS-CoV-2 also inhibited -1 PRF in a range of bat CoVs-the most likely source of future zoonoses.
View Article and Find Full Text PDFThe RNA pseudoknot that stimulates programmed ribosomal frameshifting in SARS-CoV-2 is a possible drug target. To understand how it responds to mechanical tension applied by ribosomes, thought to play a key role during frameshifting, we probe its structural dynamics using optical tweezers. We find that it forms multiple structures: two pseudoknotted conformers with different stability and barriers, and alternative stem-loop structures.
View Article and Find Full Text PDFSARS-CoV-2 uses -1 programmed ribosomal frameshifting (-1 PRF) to control expression of key viral proteins. Because modulating -1 PRF can attenuate the virus, ligands binding to the RNA pseudoknot that stimulates -1 PRF may have therapeutic potential. Mutations in the pseudoknot have occurred during the pandemic, but how they affect -1 PRF efficiency and ligand activity is unknown.
View Article and Find Full Text PDF