Publications by authors named "Sanchez-Nieves J"

Acanthamoeba species are responsible for serious human infections, including Acanthamoeba keratitis (AK) and granulomatous amoebic encephalitis (GAE). These pathogens have a simple life cycle consisting of an infective trophozoite stage and a resistant cyst stage, with cysts posing significant treatment challenges due to their resilience against harsh conditions and chemical agents. Current treatments for AK often involve combining diamines, such as propamidine, and biguanides, such as chlorhexidine (CLX), which exhibit limited efficacy and significant toxicity.

View Article and Find Full Text PDF

Gold nanoparticles (AuNPs) are potentially applicable in drug/nucleic acid delivery systems. Low toxicity, high stability, and bioavailability are crucial for the therapeutic use of AuNPs and they are mainly determined by their interactions with proteins and lipids on their route to the target cells. In this work, we investigated the interaction of two pegylated gold nanoparticles, AuNP14a and AuNP14b, with human serum proteins albumin (HSA) and transferrin (Tf) as well as dimyristoyl-phosphatidylcholine (DMPC) liposomes, which can be a representative of biomembranes.

View Article and Find Full Text PDF

Bacterial resistance to antibiotics is a significant challenge that is associated with increased morbidity and mortality. Gram-negative bacteria are particularly problematic due to an outer membrane (OM). Current alternatives to antibiotics include antimicrobial peptides or proteins and multifunctional systems such as dendrimers.

View Article and Find Full Text PDF
Article Synopsis
  • - Antimicrobial Resistance, worsened by microorganisms forming biofilms, presents a public health threat, prompting the exploration of new treatments like cationic dendritic systems (dendrimers and dendrons).
  • - The research tested six cationic carbosilane dendrimers and one dendron against multidrug-resistant bacteria and their biofilms, evaluating their effectiveness through various concentration measurements and assessing cytotoxicity on Hela cells.
  • - Results showed that certain dendrimers and the dendron had significant antibacterial activity against resistant bacteria in their planktonic state, but their effectiveness against biofilms was limited, highlighting their potential for topical use against infections.
View Article and Find Full Text PDF

The alarming rise of multi-drug resistant microorganisms has increased the need for new approaches through the development of innovative agents that are capable of attaching to the outer layers of bacteria and causing permanent damage by penetrating the bacterial outer membrane. The permeability (disruption) of the outer membrane of Gram-negative bacteria is now considered to be one of the main ways to overcome multidrug resistance in bacteria. Natural and synthetic permeabilizers such as AMPs and dendritic systems seem promising.

View Article and Find Full Text PDF

The development of biofilms on different surfaces continues to be a major public health problem. The antimicrobial resistance and the difficulty of finding drugs capable of combating these established biofilms generates the urgent need to find compounds that prevent cells from settling and establishing of these complex communities of microorganisms. Zwitterionic modification of nanomaterials allows the formation of a hydration layer, and this highly hydrophilic surface provides antifouling properties as well as a good biocompatibility by preventing non-specific interactions.

View Article and Find Full Text PDF

Drug resistance has become a global problem, prompting the entire scientific world to seek alternative methods of dealing with resistant pathogens. Among the many alternatives to antibiotics, two appear to be the most promising: membrane permeabilizers and enzymes that destroy bacterial cell walls. Therefore, in this study, we provide insight into the mechanism of lysozyme transport strategies using two types of carbosilane dendronized silver nanoparticles (DendAgNPs), non-polyethylene glycol (PEG)-modified (DendAgNPs) and PEGylated (PEG-DendAgNPs), for outer membrane permeabilization and peptidoglycan degradation.

View Article and Find Full Text PDF

Enzyme immobilization is a powerful strategy for enzyme stabilization and recyclability. Materials covered with multipoint molecules are very attractive for this goal, since the number of active moieties to attach the enzyme increases with respect to monofunctional linkers. This work evaluates different dendrimers supported on silica to immobilize a protease enzyme, Alcalase.

View Article and Find Full Text PDF

Dendrimers are multifunctional molecules with well-defined size and structure due to the step-by-step synthetic procedures required in their preparation. Dendritic constructs based on carbosilane scaffolds present carbon-carbon and carbon-silicon bonds, which results in stable, lipophilic, inert, and flexible structures. These properties are highly appreciated in different areas, including the pharmaceutical field, as they can increase the interaction with cell membranes and improve the therapeutic action.

View Article and Find Full Text PDF

Bacteria elimination from water sources is key to obtain drinkable water. Hence, the design of systems with ability to interact with bacteria and remove them from water is an attractive proposal. A diversity of polycationic macromolecules has shown bactericide properties, due to interactions with bacteria membranes.

View Article and Find Full Text PDF

Background: The search for new formulations for photodynamic therapy is intended to improve the outcome of skin cancer treatment using significantly reduced doses of photosensitizer, thereby avoiding side effects. The incorporation of photosensitizers into nanoassemblies is a versatile way to increase the efficiency and specificity of drug delivery into target cells. Herein, we report the loading of rose bengal into vesicle-like constructs of amphiphilic triazine-carbosilane dendrons (dendrimersomes) as well as biophysical and in vitro characterization of this novel nanosystem.

View Article and Find Full Text PDF

The search for new microbicide compounds is of an urgent need, especially against difficult-to-eradicate biofilm-forming bacteria. One attractive option is the application of cationic multivalent dendrimers as antibacterials and also as carriers of active molecules. These compounds require an adequate hydrophilic/hydrophobic structural balance to maximize the effect.

View Article and Find Full Text PDF

The use of nonviral carriers based on nanomaterials is a promising strategy for modern gene therapy aimed at protecting the genetic material against degradation and enabling its efficient cellular uptake. To improve the effectiveness of nanocarriers , they are often modified with poly(ethylene glycol) (PEG) to reduce their toxicity, limit nonspecific binding by proteins in the bloodstream, and extend blood half-life. Thus, the selection of an appropriate degree of surface PEGylation is crucial to preserve the interaction of nanoparticles with the genetic material and to ensure its efficient transport to the site of action.

View Article and Find Full Text PDF

Antibodies are macromolecules that specifically recognize their target, making them good candidates to be employed in various therapies. The possibility of attaching a drug to an immunoglobulin makes it possible to release it specifically into the affected tissue as long as it overexpresses the target. However, chemical coupling could affect the functionality (specificity and affinity) of the antibody.

View Article and Find Full Text PDF

This work evaluates different dendrimer-silica supports for the immobilization of enzymes by multipoint covalent binding. Thermolysin was immobilized on two dendrimers (PAMAM and carbosilane) with two different generations (zero (G0) and first (G1)). Results were compared with a control, a silica support functionalized with a monofunctional molecule.

View Article and Find Full Text PDF

The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is considered as the master regulator of antioxidant and cytoprotective gene expressions. Moreover, it plays a pivotal role in cancer progression. Nrf2 mediates the adaptive response which contributes to the resistance to chemotherapeutic pro-oxidant drugs, such as cisplatin (CDDP), in various tumors, including bladder cancers.

View Article and Find Full Text PDF

Supramolecular constructions of amphiphilic dendritic molecules are promising vehicles for anti-cancer drug delivery due to the flexibility of their architecture, high drug loading capacity and avoiding off-target effects of a drug. Herein, we report a new class of amphiphilic dendritic species-triazine-carbosilane dendrons readily self-assembling into pH-sensitive dendrimersomes. The dendrimersomes efficiently encapsulate anticancer drugs doxorubicin and methotrexate.

View Article and Find Full Text PDF

Gene therapy is a promising approach in cancer treatment; however, current methods have a number of limitations mainly due to the difficulty in delivering therapeutic nucleic acids to their sites of action. The application of non-viral carriers based on nanomaterials aims at protecting genetic material from degradation and enabling its effective intracellular transport. We proposed the use of silver nanoparticles (AgNPs) surface-modified with carbosilane dendrons as carriers of anticancer siRNA (siBcl-xl).

View Article and Find Full Text PDF

The anionic carbosilane (CBS) dendrimer with sulfonate groups G2-S16 is a promising compound for the preparation of a microbicide gel to prevent HIV infection. However, until now its synthesis required aggressive conditions. Hence, a reliable synthetic procedure is very important to face GMP conditions and clinical trials.

View Article and Find Full Text PDF

Materials modified with ammonium groups on the surface have shown antibacterial activity. In this paper, alkyl chains, carbosilane (CBS) dendrimers and dendrons and poly(amidoamine) (PAMAM) dendrimers containing amine and ammonium groups have been grafted to silica surface and the influence of molecule structure on the stability and on antibacterial activity have been evaluated. These materials have been characterized by thermogravimetric analysis (TGA), zeta (Z) potential, scanning electron microscopy (SEM), infrared spectroscopy (IR) and nuclear magnetic resonance (C CP MAS NMR).

View Article and Find Full Text PDF

Protein sample preparation is the bottleneck in the analysis of proteins. The aim of this work is to evaluate the feasibility of carbosilane dendrimers functionalized with cationic groups to make easier this step. Anionic carbosilane dendrimers (sulphonate- and carboxylate-terminated) have already demonstrated their interaction with proteins and their potential in protein sample preparation.

View Article and Find Full Text PDF

Antimicrobial proteins, like lysozymes produced by animals or bacteriophage lysins, enable the degradation of bacterial peptidoglycan (PG) and, consequently, lead to bacterial cell lysis. However, the activity of those enzymes is not satisfactory against gram-negative bacteria because of the presence of an outer membrane (OM) barrier. Lytic enzymes can therefore be combined with membrane-disrupting agents, such as dendritic silver nanoparticles.

View Article and Find Full Text PDF

Heterofunctionalized gold nanoparticles (AuNPs) were obtained in a one pot reaction of gold precursor with cationic carbosilane dendrons (first to third generations, 1-3G) and (polyethylene)glycol (PEG) ligands in the presence of a reducing agent. The final dendron/PEG proportion on AuNPs depends on the initial dendron/PEG ratio (3/1, 1/1, 1/3) and dendron generation. AuNPs were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), ultraviolet spectroscopy (UV-VIS), thermogravimetric analysis (TGA), nuclear magnetic resonance (H NMR) and zeta potential (ZP).

View Article and Find Full Text PDF

This work focuses on preparation of silver nanoparticles (AgNP) covered with cationic carbosilane dendrons and poly(ethylene glycol) (PEG). It is well known that AgNP and cationic carbosilane dendritic systems present antibacterial properties. On the other hand, PEG ligand provides antifouling properties and improved biocompatibility.

View Article and Find Full Text PDF