Publications by authors named "Sanchez-Murcia P"

Covalent Organic Frameworks (COFs) emerged as versatile materials with promising potential in  biomedicine. Their customizable functionalities and tunable pore structures make them valuable for various biomedical applications such as biosensing, bioimaging, antimicrobial activity, and targeted drug delivery. Despite efforts made to create nanoscale COFs (nCOFs) to enhance their interaction with biological systems, a comprehensive understanding of their inherent biological activities remains a significant challenge.

View Article and Find Full Text PDF

Cationic ultrashort lipopeptides (USLPs) are promising antimicrobial candidates to combat multidrug-resistant bacteria. Using DICAMs, a newly synthesized family of tripeptides with net charges from -2 to +1 and a fatty amine conjugated to the -terminus, we demonstrate that anionic and neutral zwitterionic USLPs can possess potent antimicrobial and membrane-disrupting activities against prevalent human pathogens such as and The strongest antimicrobials completely halt bacterial growth at low micromolar concentrations, reduce bacterial survival by several orders of magnitude, and may kill planktonic cells and biofilms. All of them comprise either an anionic or neutral zwitterionic peptide attached to a long fatty amine (16-18 carbon atoms) and show a preference for anionic lipid membranes enriched in phosphatidylglycerol (PG), which excludes electrostatic interactions as the main driving force for DICAM action.

View Article and Find Full Text PDF

Species of and genera are the causative agents of relevant parasitic diseases. Survival inside their hosts requires the existence of a potent antioxidant enzymatic machinery. Four iron superoxide dismutases have been described in trypanosomatids (FeSODA, FeSODB1, FeSODB2, and FeSODC) that hold a potential as therapeutic targets.

View Article and Find Full Text PDF

Previous experimental studies have shown that the isomerization reaction of previtamin D3 (PreD3) to vitamin D3 (VitD3) is accelerated 40-fold when it takes place within a β-cyclodextrin dimer, in comparison to the reaction occurring in conventional isotropic solutions. In this study, we employ quantum mechanics-based molecular dynamics (MD) simulations and statistical multistructural variational transition state theory to unveil the origin of this acceleration. We find that the conformational landscape in the PreD3 isomerization is highly dependent on whether the system is encapsulated.

View Article and Find Full Text PDF

The deployment of small-molecule fluorescent agents plays an ever-growing role in medicine and drug development. Herein, we complement the portfolio of powerful fluorophores, reporting the serendipitous discovery and development of a novel class with an imidazo[1,2-a]pyridinium triflate core, which we term PyrAtes. These fluorophores are synthesized in a single step from readily available materials (>60 examples) and display Stokes shifts as large as 240 nm, while also reaching NIR-I emissions at λ as long as 720 nm.

View Article and Find Full Text PDF

The availability of high-resolution 3D structural information is crucial for investigating guest-host systems across a wide range of fields. In the context of drug discovery, the information is routinely used to establish and validate structure-activity relationships, grow initial hits from screening campaigns, and to guide molecular docking. For the generation of protein-ligand complex structural information, X-ray crystallography is the experimental method of choice, however, with limited information on protein flexibility.

View Article and Find Full Text PDF

Biological degradation of natural product glycosides involves, alongside hydrolysis, β-elimination for glycosidic bond cleavage. Here, we discover an O-glycoside β-eliminase (OGE) from Agrobacterium tumefaciens that converts the C3-oxidized O-β-D-glucoside of phloretin (a plant-derived flavonoid) into the aglycone and the 2-hydroxy-3-keto-glycal elimination product. While unrelated in sequence, OGE is structurally homologous to, and shows effectively the same Mn active site as, the C-glycoside deglycosylating enzyme (CGE) from a human intestinal bacterium implicated in β-elimination of 3-keto C-β-D-glucosides.

View Article and Find Full Text PDF

The seventh pandemic of the diarrheal cholera disease, which began in 1960, is caused by the Gram-negative bacterium . Its environmental persistence provoking recurring sudden outbreaks is enabled by rapid adaption to changing environments involving sensory proteins like ToxR and ToxS. Located at the inner membrane, ToxR and ToxS react to environmental stimuli like bile acid, thereby inducing survival strategies for example bile resistance and virulence regulation.

View Article and Find Full Text PDF

The prediction of enzyme activity is one of the main challenges in catalysis. With computer-aided methods, it is possible to simulate the reaction mechanism at the atomic level. However, these methods are usually expensive if they are to be used on a large scale, as they are needed for protein engineering campaigns.

View Article and Find Full Text PDF

N-methylation of the triazole moiety present in our recently described triazole-phenyl-thiazole dimerization disruptors of Leishmania infantum trypanothione disulfide reductase (LiTryR) led to a new class of potent inhibitors that target different binding sites on this enzyme. Subtle structural changes among representative library members modified their mechanism of action, switching from models of classical competitive inhibition to time-dependent mixed noncompetitive inhibition. X-ray crystallography and molecular modeling results provided a rationale for this distinct behavior.

View Article and Find Full Text PDF

GABA (γ-aminobutyric acid type A) receptors are ligand-gated ion channels mediating fast inhibitory transmission in the mammalian brain. Here we report the molecular and electronic mechanism governing the turn-on emission of a fluorescein-based imaging probe able to target the human GABA receptor. Multiscale calculations evidence a drastic conformational change of the probe from folded in solution to extended upon binding to the receptor.

View Article and Find Full Text PDF

Transcription factors play key roles in orchestrating a plethora of cellular mechanisms and controlling cellular homeostasis. Transcription factors share distinct DNA binding domains, which allows to group them into protein families. Among them, the Forkhead box O (FOXO) family contains transcription factors crucial for cellular homeostasis, longevity and response to stress.

View Article and Find Full Text PDF

GABA (γ-aminobutyric acid type A) receptors are ligand-gated ion channels mediating fast inhibitory transmission in the mammalian brain. Here we report the molecular and electronic mechanism governing the turn-on emission of a fluorescein-based imaging probe able to target the human GABA receptor. Multiscale calculations evidence a drastic conformational change of the probe from folded in solution to extended upon binding to the receptor.

View Article and Find Full Text PDF

Inhibition of trypanothione disulfide reductase (TryR) by disruption of its homodimeric interface has proved to be an alternative and unexploited strategy in the search for novel antileishmanial agents. Proof of concept was first obtained by peptides and peptidomimetics. Building on previously reported dimerization disruptors containing an imidazole-phenyl-thiazole scaffold, we now report a new 1,2,3-triazole-based chemotype that yields noncompetitive, slow-binding inhibitors of TryR.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on the factors affecting the fluorescence of a Se-modified uracil probe at the ribosomal RNA A-site, specifically how it turns on and off.
  • - The main contributor to the fluorescence increase when the antibiotic paromomycin is present is the "in-plane" conformation of the probe’s two rings; environmental electrostatics have a minor effect.
  • - Without paromomycin, the probe tends to adopt conformations that lead to a "dark" electronic state due to electronic transition interactions between the selenium atom and the uracil's π-system.
View Article and Find Full Text PDF

The urge to discover selective fluorescent binders to G-quadruplexes (G4s) for rapid diagnosis must be linked to understand the effect that those have on the DNA photophysics. Herein, we report on the electronic excited states of a bound merocyanine dye to c-Myc G4 using extensive multiscale quantum mechanics/molecular mechanics calculations. We find that the absorption spectra of c-Myc G4, both without and with the intercalated dye, are mainly composed of exciton states and mixed local/charge-transfer states.

View Article and Find Full Text PDF

The development of dye-sensitized solar cells, metalloenzyme photocatalysis or biological labeling heavily relies on the design of metal-based photosensitizes with directional excitations. Directionality is most often predicted by characterizing the excitations manually canonical frontier orbitals. Although widespread, this traditional approach is, at the very least, cumbersome and subject to personal bias, as well as limited in many cases.

View Article and Find Full Text PDF

The ultrafast time evolution of a single-stranded adenine DNA is studied using a hybrid multiscale quantum mechanics/molecular mechanics (QM/MM) scheme coupled to nonadiabatic surface hopping dynamics. As a model, we use (dA) where a stacked adenine tetramer is treated quantum chemically. The dynamical simulations combined with on-the-fly quantitative wave function analysis evidence the nature of the long-lived electronically excited states formed upon absorption of UV light.

View Article and Find Full Text PDF

Quantum chemical and multiscale calculations reveal the mechanistic pathway of two superoxide dismutase mimetic N-alkylated tetra-azacyclophane copper complexes with remarkable activity. The arrangement of the binding site afforded by the bulky alkyl substituents and the coordinated water molecule as a proton source play key roles in the reaction mechanism.

View Article and Find Full Text PDF

A conformationally constrained short peptide designed to target a protein-protein interaction hotspot in HIV-1 reverse transcriptase (RT) disrupts p66-p51 interactions and paves the way to the development of novel RT dimerization inhibitors.

View Article and Find Full Text PDF

The recent delivery of a fluorescent quinolizidine-substituted spiropyran, which is able to switch in vivo and bind to guanine quadruplexes (G4) at physiological pH values, urged us to elucidate its molecular switching and binding mechanism. Combining multiscale dynamical studies and accurate quantum chemical calculations, we show that, both in water and in the G4 environment, the switching of the spiropyran ring is not promoted by an initial protonation event-as expected by the effect of low pH solutions-but that the deprotonated merocyanine form is an intermediate of the reaction leading to the protonated open species. Additionally, we investigate the binding of both deprotonated and protonated open forms of merocyanine to c-MYC G4s.

View Article and Find Full Text PDF

Microbial enzymes from pristine niches can potentially deliver disruptive opportunities in synthetic routes to Active Pharmaceutical Ingredients and intermediates in the Pharmaceutical Industry. Advances in green chemistry technologies and the importance of stereochemical control, further underscores the application of enzyme-based solutions in chemical synthesis. The rich tapestry of microbial diversity in the oceanic ecosystem encodes a capacity for novel biotransformations arising from the chemical complexity of this largely unexplored bioactive reservoir.

View Article and Find Full Text PDF

We report on a stabilizer of the interaction between 14-3-3ζ and the Estrogen Receptor alpha (ERα). ERα is a driver in the majority of breast cancers and 14-3-3 proteins are negative regulators of this nuclear receptor, making the stabilization of this protein-protein interaction (PPI) an interesting strategy. The stabilizer (1) consists of three symmetric peptidic arms containing an arginine mimetic, previously described as the GCP motif.

View Article and Find Full Text PDF