Publications by authors named "Sanchez-Espinel C"

Antibody-functionalized gold nanoparticle constitutes a powerful interface biosystem for biomedical applications where the properties of gold nanoparticles and the specificity of antibody-antigen interactions are combined. This study provides insight into the key factors for the development of antibody functionalized gold nanoparticles focusing on the immobilization of the antibody. Here, we address an oriented antibody immobilization procedure on gold nanoparticles.

View Article and Find Full Text PDF

The Squamata order represents a major evolutionary reptile lineage, yet the structure and expression of immunoglobulins in this order has been scarcely studied in detail. From the genome sequences of four Squamata species (Gekko japonicus, Ophisaurus gracilis, Pogona vitticeps and Ophiophagus hannah) and RNA-seq datasets from 18 other Squamata species, we identified the immunoglobulins present in these animals as well as the tissues in which they are found. All Squamata have at least three immunoglobulin classes; namely, the immunoglobulins M, D, and Y.

View Article and Find Full Text PDF

An in situ template fabrication of inorganic nanoparticles using carboxylated PEG-dendritic block copolymers of the GATG family is described as a function of the dendritic block generation, the metal (Au, CdSe) and metal molar ratio. The biocompatibility of the generated nanoparticles analysed in terms of their aggregation in physiological media, cytotoxicity and uptake by macrophages relates to the PEG density of the surface of the hybrids.

View Article and Find Full Text PDF

Reptiles and mammals diverged over 300 million years ago, creating two parallel evolutionary lineages amongst terrestrial vertebrates. In reptiles, two main evolutionary lines emerged: one gave rise to Squamata, while the other gave rise to Testudines, Crocodylia, and Aves. In this study, we determined the genomic variable (V) exons from whole genome shotgun sequencing (WGS) data in reptiles corresponding to the three main immunoglobulin (IG) loci and the four main T cell receptor (TR) loci.

View Article and Find Full Text PDF

Variable (V) domains of immunoglobulins (Ig) and T cell receptors (TCR) are generated from genomic V gene segments (V-genes). At present, such V-genes have been annotated only within the genome of a few species. We have developed a bioinformatics tool that accelerates the task of identifying functional V-genes from genome datasets.

View Article and Find Full Text PDF

Immunoglobulin loci of two representatives of the order Crocodylia were studied from full genome sequences. Both Alligator mississippiensis and Crocodylus porosus have 13 genes for the heavy chain constant regions of immunoglobulins. The IGHC locus contains genes encoding four immunoglobulins M (IgM), one immunoglobulin D (IgD), three immunoglobulins A (IgA), three immunoglobulins Y (IgY), and two immunoglobulins D2 (IgD2).

View Article and Find Full Text PDF

The gene segments encoding antibodies have been studied in many capacities and represent some of the best-characterized gene families in traditional animal disease models (mice and humans). To date, multiple immunoglobulin light chain (IgL) isotypes have been found in vertebrates and it is unclear as to which isotypes might be more primordial in nature. Sequence data emerging from an array of fish genome projects is a valuable resource for discerning complex multigene assemblages in this critical branch point of vertebrate phylogeny.

View Article and Find Full Text PDF

The availability of reptile genomes for the use of the scientific community is an exceptional opportunity to study the evolution of immunoglobulin genes. The genome of Chrysemys picta bellii and Pelodiscus sinensis is the first one that has been reported for turtles. The scanning for immunoglobulin genes resulted in the presence of a complex locus for the immunoglobulin heavy chain (IGH).

View Article and Find Full Text PDF

Immunoglobulins are basic molecules of the immune system of vertebrates. In previous studies we described the immunoglobulins found in two squamata reptiles, Anolis carolinensis and Eublepharis macularius. Snakes are squamata reptiles too but they have undergone an extreme evolutionary process.

View Article and Find Full Text PDF

Galectins are a group of β-galactoside-binding mammalian lectins that play important roles in the regulation of the immune response by promoting T cell tolerance, blunting Th1 and Th17 responses and suppressing autoimmune inflammation. However, the synthesis of these molecules by different T helper (Th) subsets and in the context of human type 1 diabetes (T1D) has not yet been studied. Our results show that Th17 polarising conditions induce the synthesis of higher levels of galectin-1 compared to Th1-polarised lymphocytes.

View Article and Find Full Text PDF

Background: Bony fish present an immunological system, which evolved independently from those of animals that migrated to land 400 million years ago. The publication of whole genome sequences and the availability of several cDNA libraries for medaka (Oryzias latipes) permitted us to perform a thorough analysis of immunoglobulin heavy chains present in this teleost.

Results: We identified IgM and IgD coding ESTs, mainly in spleen, kidney and gills using published cDNA libraries but we did not find any sequence that coded for IgT or other heavy chain isotypes described in fish.

View Article and Find Full Text PDF

A sandwich immunoassay using magnetic beads as bioreaction platforms and AuNPs as electroactive labels for the electrochemical detection of human IgG antibodies anti-Hepatitis B surface antigen (HBsAg), is here presented as an alternative to the standard methods used in hospitals for the detection of human antibodies directed against HBsAg (such as ELISA or MEIA). The electrochemical detection of AuNPs is carried out approaching their catalytic properties towards the hydrogen evolution in an acidic medium, without previous nanoparticle dissolution. The obtained results are a good promise toward the development of a fully integrated biosensing set-up.

View Article and Find Full Text PDF

Nanoparticles (NPs) can offer many advantages over traditional drug design and delivery, as well as toward medical diagnostics. As with any medical device or pharmaceutical drug intended to be used for in vivo biomedical applications, NPs must be sterile. However, very little is known regarding the effect of sterilization methods on the intrinsic properties and stability of NPs.

View Article and Find Full Text PDF

There is a high demand for simple, rapid, efficient, and user-friendly alternative methods for the detection of cells in general and, in particular, for the detection of cancer cells. A biosensor able to detect cells would be an all-in-one dream device for such applications. The successful integration of nanoparticles into cell detection assays could allow for the development of this novel class of cell sensors.

View Article and Find Full Text PDF

This study describes the IGH locus in Gasterosteus aculeatus, with 10 genes encoding three immunoglobulin classes: IgT, IgM and IgD. These genes are organized into a structure with three repeats of IGHT-IGHM-IGHD separated by segments including the VH segments. There was also a fourth IGHT gene.

View Article and Find Full Text PDF

Immunoglobulins loci in mammals are well known to be organized within a translocon, however their origin remains unresolved. Four of the five classes of immunoglobulins described in humans and rodents (immunoglobulins M, G, E and A-IgM, IgG, IgE and IgA) were found in marsupials and monotremes (immunoglobulin D-IgD was not found) thus showing that the genomic structure of antibodies in mammals has remained constant since its origin. We have recently described the genomic organization of the immunoglobulin heavy chain locus in reptiles (IGHM, IGHD and IGHY).

View Article and Find Full Text PDF

We describe the entire immunoglobulin heavy chain (IgH) locus from the reptile Anolis carolinensis. The heavy chain constant (C(H)) region includes C mu, C delta and C upsilon genes. This is the first description of a C upsilon gene in the reptilian class.

View Article and Find Full Text PDF

Inorganic nanoparticles (NPs) show great potential for medicinal therapy. However, biocompatibility studies are essential to determine if they are safe. Here, five different NPs are compared for their cytotoxicity, internalization, aggregation in medium, and reactive oxygen species (ROS) production, using tumoral and normal human blood cells.

View Article and Find Full Text PDF